
CS 492
Senior Design Project

2021 Spring

Low-Level Design Report

PolliVidis

Ömer Ünlüsoy - 21702136
Elif Gamze Güliter - 21802870

İrem Tekin - 21803267
Ece Ünal - 21703149

Umut Ada Yürüten - 21802410

Supervisor: Ercüment Çiçek
Jury Members: Shervin Arashloo and Hamdi Dibeklioglu

This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfillment of the requirements of the Senior Design Project course CS491/2.

 2

Table of Contents
1.	Introduction	...	3	
1.1	Object	Design	Trade-offs	..	3	
1.1.1	Security	vs	Efficiency	...	3	
1.1.2	Functionality	vs	Usability	..	3	
1.1.3	Compatibility	vs	Cost	...	4	
1.1.4	Speed	vs	Functionality	..	4	

1.2	Interface	Documentation	Guidelines	...	1	
1.3	Engineering	Standards	..	1	
1.4	Definitions,	Acronyms,	and	Abbreviations	..	2	

2.	Packages	...	3	
2.0	Introduction	...	3	
2.1	Client	...	5	
2.1.1	Presentation	Tier	...	5	

2.2	Server	..	7	
2.2.1	Logic	Tier	..	7	
2.2.2	Data	Tier	...	12	

3.	Class	Interfaces	...	14	
3.0	Introduction	...	14	
3.1	Client	...	14	
3.1.1	Presentation	Tier	..	14	

3.2	Server	..	20	
3.2.1	Logic	Tier	...	20	
3.2.2	Data	Tier	...	32	

4.	Extraction	Process	...	38	

5.	References	..	39	

 3

1. Introduction
Currently, the process of identifying a pollen is considered as a tedious job since it must
be done manually. Since the samples of pollen are collected manually an image requires
manual labor to process. Furthermore, identifying pollen from irrelevant noise or content
as well as distinguishing pollen variants from one another must be done through trained
eyes, which itself is an inconvenient job. Additionally, training new students to identify
pollens requires further effort, especially distinguishing pollens with similar granular cell
structures.

Fortunately, along with the developments in machine learning, most systems are
transforming into automated models. The advancements of image processing and image
classification highly inspires an automated system that could improve the manual process
of pollen classification. Although there have been attempts to create such a machine
learning model in order to identify pollen in a given data, currently there is no widely
available model to identify pollen types for palynology, the branch of biology which
examines pollen. Hence, we aim to develop a system that can fill the role of a publicly
available web application for pollen identification in Turkey which would help academics
to easily classify the pollen they research. Furthermore, this application would aid
students trying to learn the details of palynology. PolliVidis would allow users to easily
upload an image to the web application and get the results. Apart from being widely
accessible, PolliVidis also aims to create a database for palynologists to share pollen data
across the country.

1.1 Object Design Trade-offs

1.1.1 Security vs Efficiency
Since using hashing algorithms to store passwords needs extra time for calculations, it
may cause delay in the system’s response time. However, 200 milliseconds of response
time, which is the maximum response time recommended by Google [1], is decided for
this process. Hence, we aim to have an optimal balance between security and efficiency.

1.1.2 Functionality vs Usability

Ease of use is one of the main concerns while designing the front-end of the application.
It can be said that front-end design favors usability over functionality, however, it is
important to note that our main functionality is related to classification and counting of the

 4

pollen samples, and it will not be affected by the decision of choosing usability over
functionality.

1.1.3 Compatibility vs Cost

PolliVidis is a web-based application which will be working on with the most popular four
web browsers which are Google Chrome, Safari, Microsoft Edge and Mozilla Firefox [2].
To increase the compatibility, it is considered developing a mobile application, however,
it would increase the cost and it is decided that web application offers enough
compatibility.

1.1.4 Speed vs Functionality

The functionality of the ML model will be favored over the response speed of the system
since one of the main aims of the system is to help academics by classifying the pollen
species and count pollen with accurate results.

1.2 Interface Documentation Guidelines
The following template is used for each class definition in this report. The class name and
the description are stated first, then the attributes of the class are given and finally
methods of the class are explained.

Class Name

Class Description

Attributes

Attribute Type : Attribute Name

Methods

MethodName (Parameters) : Return Type Method Description

1.3 Engineering Standards

Low Level Design Report diagrams follow the UML guidelines [3] as the previous reports
of PolliVidis.

Until this report; PolliVidis has used UML Use Case Diagram to describe user interactions
with the web application [4], UML Sequence Diagram to describe the lifeline of an object
[5], UML Activity Diagram to describe the control flow of the system [6], and UML
Deployment Diagram to define the hardware communication of the system [7].

In the Low-Level Design Report, PolliVidis uses UML Class Diagram to describe statically
the structure of the system [8]. As the usage of UML is standard in the industry, all
diagrams follow the UML guidelines.

For the citations in the reports, IEEE Citation guidelines are followed as it is the standard
in engineering [9].

 2

1.4 Definitions, Acronyms, and Abbreviations

Palynology: Branch of biology studying pollen.

Academic: User with a pollen or biology related background such as palynologists,
biologists, and palynology or biology students.

Allergenic Pollen: Specific pollen types that humans can develop allergies to.

Sample / Pollen Sample: Pollen image shot by a light microscope containing a few
pollen.

Noise: All other shapes in the sample rather than pollen itself such as spores.

Sample Analysis: Procedure of identifying pollen types, classification, from a sample
using machine learning.

Analysis Report: Report containing pollen information generated by the pollen analysis.

Pollen Map: Google Maps supported map showing pollen information and distribution of
Turkey.

Pollen Extraction: Process of extracting a single pollen image from the sample with few
pollens using the Pollen Extraction Algorithm coded by us.

(Ankara) Dataset: Pollen dataset, collection of pollen images, created by us in Ankara
University.

PolliVidis Database: MySQL based database to store all (allowed) uploaded pollen
samples with their analyses in order to construct the Pollen Map.

CNN: Convolutional Neural Networks

Transfer Learning: Using pre-trained networks such as AlexNet or VGG-19 to boost the
classification.

Data Augmentation: Manipulating dataset to avoid overfitting and increasing accuracy.

Google Maps API: used API for the Pollen Map of PolliVidis.

Django: Python package for website backend.

React: JavaScript library for website frontend.

MySQL: Relational database management system for SQL.

PyTorch: Python package for Machine Learning and Deep Learning.

 3

2. Packages

2.0 Introduction
PolliVidis takes advantage of some external packages, libraries, which allow the system
to be more dynamic and optimized while taking away the burden to code everything from
scratch.

The first and the most significant package PolliVidis uses is PyTorch [10]. This package
is a machine learning package developed by Facebook, allowing its users to construct
and train neural networks easily. PolliVidis will use this package to architect its CNN and
train it with the dataset we created.

The second package is SCikit-Image which PolliVidis uses for pollen extraction from
sample images. It is basically an image processing toolbox [11].

For the frontend, PolliVidis uses React Library [12]. React is a JavaScript library for
building user interfaces easily.

To connect the UI with the database and ML model, PolliVidis has taken advantage of the
Django framework which allows its users to create web apps and connect them with their
server [13].

Lastly, Google Maps API is used for PolliVidis Pollen Map [14]. This API allowed us to
construct and modify a web app in PolliVidis website.

After explaining the external packages used, let’s see the internal structure of the web
app. PolliVidis mimics 3-Tier Client/Server Architecture.

On the client side, the system implements the Presentation Tier which contains the UI
Subsystem. This subsystem is implemented with React and manages UI components.
This subsystem sends queries to the server to handle user requests and shows the results
of the queries to the user.

On the server side of the system, the system implements Logic and Data Tiers. In the
Logic Tier, there are two subsystems, namely Backend Subsystem and ML Subsystem.
Backend Subsystem is implemented with the Python Django Framework. It directs
queries coming from the client side to the Data Tier and handles user requests. This
subsystem uses the ML Subsystem to extract pollen images from the sample image and
analyze them one by one. It returns the analyses to the user.

 4

ML Subsystem is the core of PolliVidis and implements two main functionalities, pollen
extraction from the sample image and pollen classification with PyTorch. The
classification is done by a CNN and pollen extraction uses Image Processing with the
SCikit-Image package.

In the Logic Tier, a single subsystem named Database Subsystem handles database
interactions of PolliVidis. It implements the MySQL database and all queries within it and
supplies Python Model classes for ease of use.

 5

2.1 Client

2.1.1 Presentation Tier

2.1.1.1 UI Subsystem

UI Subsystem consists of user interface front-end views.

2.1.1.1.1 Path Manager

Path Manager handles the navigation and main structure of the frontend. It controls the
presentation tier.

2.1.1.1.2 AnalyzeSampleView

Figure 1: UI Subsystem

 6

AnalyzeSampleView handles the user interface of the screen in which users upload
sample images and request an analysis.

2.1.1.1.3 AnalysisReportView

AnalysisReportView handles the user interface of the screen in which the analysis report
of the users’ samples is shown.

2.1.1.1.4 PollenMapView

PollenMapView handles the user interface of the Google Maps pollen map which contains
the pollen analyses as markers. When clicked on one, the analysis report of the analysis
is shown.

2.1.1.1.5 PreviousAnalysisView

PreviousAnalysisView handles the user interface of the screen in which an academic’s
previous analysis reports are shown.

2.1.1.1.6 AcademicLoginView

AcademicLoginView handles the user interface of the screen in which an academic can
login.

2.1.1.1.7 AcademicSignUpView

AcademicSignUpView handles the user interface of the screen in which a user can sign
up as an academic.

2.1.1.1.8 AcademicProfileView

AcademicProfileView handles the user interface of the screen that shows the profile
information of an academic.

2.1.1.1.9 AboutUsView

AboutUsView handles the user interface of the screen that shows PolliVidis developers’
information.

2.1.1.1.10 GiveFeedBackView

 7

GiveFeedBackView handles the user interface of the screen in which users can send
feedback about PolliVidis.

2.2 Server

2.2.1 Logic Tier

2.2.1.1 Backend Subsystem

Backend Subsystem mainly consists of firstly model objects used both in data and client
level, secondly the serializer classes of the model objects for Http responses to the front
end, and lastly the handler classes that process the request and respond accordingly.

Figure 2: Backend Subsystem

 8

2.2.1.1.1 Academic
Contains the class of Academic model which has been used both in client and data level.
It is used for keeping consistency in all levels as well as defining the Http response for
the client side.

2.2.1.1.2 Sample
Contains the class of Sample model which has been used both in client and data level. It
is used for keeping consistency in all levels as well as defining the Http response for the
client side.

2.2.1.1.3 PollenType
Contains the class of PollenType model which has been used both in client and data
level. It is used for keeping consistency in all levels as well as defining the Http response
for the client side.

2.2.1.1.4 Feedback
Contains the class of Feedback model which has been used both in client and data level.
It is used for keeping consistency in all levels as well as defining the Http response for
the client side.

2.2.1.1.5 Models
Contains the general class for models that is recognized by the REST django API.

2.2.1.1.6 AcademicSerializer
Contains a serializable version of the Academic class which is used to convert the
Academic objects into proper Http Response bodies.

2.2.1.1.7 SampleSerializer
Contains a serializable version of the Sample class which is used to convert the Academic
objects into proper Http Response bodies.

2.2.1.1.8 PollenTypeSerializer
Contains a serializable version of the PollenTypeclass which is used to convert the
Academic objects into proper Http Response bodies.

2.2.1.1.9 FeedbackSerializer
Contains a serializable version of the Feedback class which is used to convert the
Academic objects into proper Http Response bodies.

 9

2.2.1.1.10 Serializer
Contains the general class for serializer classes that is recognized by the REST django
API.

2.2.1.1.11 request_handler.urls
This class handles requests that arrive from the client side of the project. This class maps
the given url to the respective handler, and redirects to that file. Although most of the
requests are directed to the main API, this handler allows debugging via redirecting to
admin pages. Furthermore, this file could be expanded to include different types of
requests from different types of users.

2.2.1.1.12 urls
Much like the request_handler package in 2.2.1.1.11, this class maps request urls.
However, unlike its counterpart, this url handler maps the Http requests to their respective
functions in views file as it is explained in 2.2.1.1.13.

2.2.1.1.13 views
This class is the central part of the backend subsystem and contains functions that
handles, processes and responds to the requests made by the client level. As explained
in 2.2.1.1.12, urls class redirects a request to a proper function in this class. In each
function, the request is transformed and acknowledged with proper Model classes. Next,
methods from Database_Manager are used for database operations. Details of the
Database_Manager are further explained in 2.2.2.1, hence it is represented as a blackbox
class. After acquiring the results from the database, an HttpResponse is formed via
Serializer classes and then sent back to client side.

 10

2.2.1.2 ML Subsystem

ML Subsystem has two main functionalities; pollen classification with PyTorch and pollen
image extraction from the incoming sample image.

2.2.1.2.1 ML Manager
ML Manager class is the driver class of this subsystem, it uses Pollen Extraction and
ConvNN classes to respond to a client request. Thus, it handles the two main
functionalities of this subsystem, namely pollen classification and pollen image extraction.
This manager class holds the trained model and uses ConvNN class to predict and
classify the incoming pollens from the client. Moreover, it processes the sample image
and extracts pollen images using the Pollen Extraction class.

Figure 3: ML Subsystem

 11

2.2.1.2.2 Pollen Extraction
This class implements the pollen extraction algorithm, using image processing and
dilation with Python SCikit-Image package. This extraction algorithm is used in two
scenarios; when the pollen dataset of PolliVidis is prepared and ready to be pre-
processed before going into the training algorithm, and when the client sends a sample
image with a few pollens in it required to be pre-processed before the classification. Thus,
this class can process a single image and folders of images at the same time. The
procedure of this algorithm is explained in detail in another section of this report.

2.2.1.2.3 ConvNN
ConvNN is the class of the ML model which implements the Convolutional Neural
Network. This class holds the hyperparameters of the architecture, uses Trainer class to
train its model, and saves the trained model for later use. The predictions of the model
are made in this class.

2.2.1.2.4 Trainer_CNN
This class implements the training procedure of the model. The sole reason for this
functionality to be implemented as a separate class is ease of use.

2.2.1.2.5 Tester_CNN
This class implements the testing procedure of the model and calculates the evaluation
matrices.

2.2.1.2.6 Helper_Functions
This class is a helper class used by most classes in this subsystem. It implements general
purpose functionalities such as printing, plotting, and converting images. Its
implementation simplifies the subsystem.

 12

2.2.2 Data Tier

2.2.2.1 Database Subsystem
Database Subsystem deals with the usage and the management of the database for the
application.

Figure 4: Database Subsystem

 13

2.2.2.1.1 AcademicModel
Contains the class of AcademicModel, which has been used both in client and data level.
It is used to acknowledge the data received from the backend as well as sent and acquired
from the database.

2.2.2.1.2 SampleModel
Contains the class of SampleModel, which has been used both in client and data level. It
is used to acknowledge the data received from the backend as well as sent and acquired
from the database.

2.2.2.1.3 PollenTypeModel
Contains the class of PollenTypeModel, which has been used both in client and data level.
It is used to acknowledge the data received from the backend as well as sent and acquired
from the database.

2.2.2.1.4 FeedbackModel
Contains the class of FeedbackModel, which has been used both in client and data level.
It is used to acknowledge the data received from the backend as well as sent and acquired
from the database.

2.2.2.1.5 Database_Manager
This class is the main processor of the Database Subsystem. It is used to connect to the
database, initialize it and then execute commands for utilizing the database. It uses other
Model classes to send and receive data from the database, in which the tables correspond
with the model objects.

 14

3. Class Interfaces

3.0 Introduction
In the Class Interfaces section, attributes and methods of each class will be given with
the method signatures and detailed explanations.

3.1 Client

3.1.1 Presentation Tier

3.1.1.1 UI Subsystem

Class PathManager

Path Manager handles the navigation and main structure of the frontend. It controls the
presentation tier.

Attributes

private React Component[] components

private String[] pathNames

Methods

void assignPaths() Assigns paths to components (pages)

Class AnalyzeSampleView

AnalyzeSampleView handles the user interface of the screen in which users upload sample
images and request an analysis.

Attributes

private boolean popupOpen

private file selectedImage

Private int id

 15

Private boolean goAnalysisPage

Private Date date

Private float lng

Private float lat

Methods

void handleClickOpen() Opens the popup screen for selecting image

void handleClose() Closes the popup screen for selecting image

void setSelectedImage() Sets the attribute selected image

void setDate(Date date) Sets the attribute date

void setId(int id) Sets the attribute id

void setLat(float lat) Sets the attribute lat

void setLng(float lng) Sets the attribute lng

Void handleDeleteImage() Deletes the selected image, sets selected
image null

Void submitHandler() Sends the selected image, date, lat, lng, id
to the server

Class AnalysisReportView

AnalysisReportView handles the user interface of the screen in which the analysis report of the
users’ samples is shown.

Attributes

Private JSON Object analysis

Methods

void setAnalysis(JSON Object analysis) Sets the analysis information coming from
the server to the attribute analysis

 16

Class PollenMapView

PollenMapView handles the user interface of the Google Maps pollen map which contains the
pollen analyses as markers. When clicked on one, the analysis report of the analysis is shown.

Attributes

Private Marker[] markers

Private boolean selected

Private boolean open

Methods

Void setMarkers(Marker[] markers) Sets the marker locations coming from the
server to the markers array

Void setSelected(boolean selected) Sets the attribute selected. Used when a
marker is clicked by the user.

Void setOpen(boolean open) Sets the attribute open. Opens a left drawer
when a marker is clicked and shows
analysis information corresponding to that
marker.

Class PreviousAnalysesView

PreviousAnalysisView handles the user interface of the screen in which an academic’s previous
analysis reports are shown.

Attributes

Private int academicId

Private JSON Object[] analyses

Methods

void setAnalyses(JSON Object[] analyses) Sets the previous analyses information
coming from the server to the attribute
analyses

Void setAcademicId(int academicId) Sets the attribute academicId

 17

Class AcademicLoginView

AcademicLoginView handles the user interface of the screen in which an academic can login.

Attributes

Private String email

Private String password

Methods

void handleSubmit() Send email and password information to the
server

Void setEmail(String email) Sets the attribute email

Void setPassword(String password) Sets the attribute password

Class AcademicSignUpView

AcademicSignUpView handles the user interface of the screen in which a user can sign up as
an academic.

Attributes

Private String fullName

Private String appellation

Private String password

Private String email

Private String institution

Methods

void setFullName(String fullName) Sets the attribute fullName

void setAppellation(String appellation) Sets the attribute appellation

 18

void setPassword(String password) Sets the attribute password

void setEmail(String email) Sets the attribute email

void setInstitution(String institution) Sets the attribute institution

Void clearForm() Sets all the attributes to null

Class AcademicProfileView

AcademicProfileView handles the user interface of the screen that shows the profile information
of an academic.

Attributes

Private String fullName

Private String appellation

Private file image

Private String email

Private String institution

Methods

void setFullName(String fullName) Sets the attribute fullName

void setAppellation(String appellation) Sets the attribute appellation

void setEmail(String email) Sets the attribute email

void setInstitution(String institution) Sets the attribute institution

Void setImage(file image) Sets the attribute image

 19

Class AboutUsView

AboutUsView handles the user interface of the screen that shows PolliVidis developers’
information.

Attributes

Private file groupImage

Methods

void setGroupImage(file groupImage) Sets the attribute groupImage

Class GiveFeedBackView

GiveFeedBackView handles the user interface of the screen in which users can send feedback
about PolliVidis.

Attributes

Private String comment

Private String email

Methods

void setComment(String comment) Sets the attribute comment

void setEmail(String email) Sets the attribute email

Void sendFeedBack() Sends the comment and email information
to the server

 20

3.2 Server

3.2.1 Logic Tier

3.2.1.1 Backend Subsystem

Class Academic

Contains the class of Academic model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

Attributes

private int academic_id

private String name

private String surname

private String appellation

private String job

private String mail

private String institution

private String password

private Image photo

private String research_gate_link

 21

Class Sample

Contains the class of Sample model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

Attributes

private int sample_id

private int academic_id

private Image sample_photo

private Date date

private int location_latitude

private int location_longitude

private String analysis_text

private Boolean publication_status

private Boolean anonymous_status

private String research_gate_link

private List<PollenTypeModel,int> pollens

 22

Class PollenType

Contains the class of PollenType model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

Attributes

private String pollen_name

private String explanation_text

Class Feedback

Contains the class of Feedback model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

Attributes

private int feedback_id

private String name

private int academic_id

private String email

private String text

private Date date

private String status

 23

Class Models

Contains the general class for models that is recognized by the REST django API.

Attributes

private List<Field> fields

Class AcademicSerializer

Contains a serializable version of the Academic class which is used to convert the Academic
objects into proper Http Response bodies.

Attributes

private Academic model

private String[] fields

Class SampleSerializer

Contains a serializable version of the Sample class which is used to convert the Academic
objects into proper Http Response bodies.

Attributes

private Sample model

private String[] fields

 24

Class PollenTypeSerializer

Contains a serializable version of the PollenType class which is used to convert the Academic
objects into proper Http Response bodies.

Attributes

private PollenType model

private String[] fields

Class FeedbackSerializer

Contains a serializable version of the Feedback class which is used to convert the Academic
objects into proper Http Response bodies.

Attributes

private Feedback model

private String[] fields

Class Serializer

Contains the general class for serializer classes that is recognized by the REST django API.

Attributes

private Models model

Methods

serialize(parameter : List <Fields>) Serializes the given model according to the
its fields

 25

Class request_handler.urls

This class handles requests that arrive from the client side of the project. This class maps the
given url to the respective handler, and redirects to that file. Although most of the requests are
directed to the main API, this handler allows debugging via redirecting to admin pages.
Furthermore, this file could be expanded to include different types of requests from different
types of users.

Attributes

private List<String, File> urlpatterns

Methods

path(url : String, redirection : File) Redirects given string url to mapped file

Class urls

Much like the request_handler package in 2.2.1.1.11, this class maps request urls. However,
unlike its counterpart, this url handler maps the Http requests to their respective functions in
views file as it is explained in 2.2.1.1.13.

Attributes

private List<String, File> urlpatterns

Methods

path(url : String, redirection : Function) Redirects given string url to the mapped
function

 26

Class views

This class is the central part of the backend subsystem and contains functions that handles,
processes and responds to the requests made by the client level. As explained in 2.2.1.1.12,
urls class redirects a request to a proper function in this class. In each function, the request is
transformed and acknowledged with proper Model classes. Next, methods from
Database_Manager are used for database operations. Details of the Database_Manager are
further explained in 2.2.2.1, hence it is represented as a blackbox class. After acquiring the
results from the database, an HttpResponse is formed via Serializer classes and then sent back
to the client side.

Methods

analyses_post(request : HttpRequest) :
HttpResponse <Boolean>

Inserts the given analysis to the database.
Returns true if successful, otherwise false

analyses_get_by_id(pk : int) : HttpResponse
<SampleSerializer>

Returns the analysis with the given id

get_all_samples() : HttpResponse
<SampleSerializer>

Returns all uploaded samples from the
database

login(request : HttpRequest <Academic>) :
HttpResponse <Boolean>

Attempts to find matching Academic in the
database. Returns the user if found, null
otherwise.

signup(request : HttpRequest <Academic>) :
HttpResponse <Academic>

Attempts to insert a user into the database.
Returns the user if successful, null
otherwise.

academic_delete(request : HttpRequest, pk : int)
: HttpResponse <Boolean>

Attempts to remove an Academic user with
the given properties. Returns true if
successful, false otherwise.

academic_update(request : HttpRequest
<Academic>) : HttpResponse <Boolean>

Changes the attributes of an Academic tuple
in the database. Returns true if successful,
false otherwise.

feedback_post(request : HttpRequest
<Feedback>) : HttpResponse <Boolean>

Inserts new feedback into the database.
Returns true if successful, false otherwise.

pollen_get(request : HttpRequest <int>) :
HttpResponse <PollenSerializer>

Gets a pollen of PollenType from the
database with the given parameters.
Returns the pollen if successful, null
otherwise.

 27

3.2.1.2 ML Subsystem

Class ML_Manager

ML Manager class is the driver class of this subsystem, it uses Pollen Extraction and ConvNN
classes to respond to a client request. Thus, it handles the two main functionalities of this
subsystem, namely pollen classification and pollen image extraction. This manager class holds
the trained model and uses ConvNN class to predict and classify the incoming pollens from the
client. Moreover, it processes the sample image and extracts pollen images using the Pollen
Extraction class.

Attributes

private ConvNN model

Methods

analyze_sample(image, location, date,
academic_name, db, dilation) : PilImage, text

This function gets the image from the client
side via backend and calls ConvNN forward
function to classify each pollen after
extracting them from the sample. It returns
the analyzed image with the analysis text.

extract_dataset_folder(source_dir, save_dir,
current_folder, dilation, plot)

This function calls the Pollen_Extraction
class to process a dataset folder.

dilation_test(source_dir, current_folder, dilation,
im_num, plot)

This function calls the dilation test of the
extractor.

get_analysis_text(pollens_dict, location, date,
academic_name, db) : String

This function constructs the analysis text
from the classification results.

train_model() This function calls the training procedure of
Training_CNN.

 28

Class Pollen_Extraction

This class implements the pollen extraction algorithm, using image processing and dilation with
Python SCikit-Image package. This extraction algorithm is used in two scenarios; when the
pollen dataset of PolliVidis is prepared and ready to be pre-processed before going into the
training algorithm, and when the client sends a sample image with a few pollens in it required
to be pre-processed before the classification. Thus, this class can process a single image and
folders of images at the same time. The procedure of this algorithm is explained in detail in
another section of this report.

Methods

extract_PIL_Image(image, dilation) : PilImage [] This function extracts pollens from the single
given image and is used for the client
sample images.

extract_folder(source_dir, save_dir, current_fol,
dilation, plot)

This function processes the entire folder for
pollen extraction for the pre-processing for
the training.

dilation_test(source_dir, current_fol, dilation,
im_num)

This function tests for the best dilation value
for a given image.

extract_image(file, filename, save_fol, err_fol,
n_dilation)

This function extracts a single image, and is
called by extract_PIL_Image.

binary_dilation(thresholded_img, n_dilation) :
PilImage

This function applies binary dilation to given
image.

get_image_and_threshold(file_name, PILImage)
: PilImage

This function loads the image from a filepath
and applies thresholding to the image.

label_image(dil_img, gray_img, or_img,
file_name) : PilImage []

This function labels the binary thresholded
image to separate regions for pollen
extraction.

get_segmented_image(coords, org_img,
file_name) : PilImage

This image applies segmentation.

add_padding(xmax, ymax, xmin, ymin, yorg,
xorg) : int []

This function adds padding to the
segmented image before extracting it.

 29

Class ConvNN

ConvNN is the class of the ML model which implements the Convolutional Neural Network. This
class holds the hyperparameters of the architecture, uses Trainer class to train its model, and
saves the trained model for later use. The predictions of the model are made in this class.

Attributes

private String[] classes

protected Cuda device

private Boolean print_dataset

private Boolean print_testset

private int image_size

private int freeze_AlexNet_layer

private torch.AlexNet model

Methods

forward(X) : int This function is the classic forward method
of CNN, predicts the class of the given
image.

forward_image(image) : int This function applies transformations before
calling the forward method.

load_model() This function loads the model for the later
use by ML_Manager.

initialize_CNN() This function is the main driver function of
this class, it is a procedure of creating
transformations, datasets, and calling
training function.

enter_log(text : String) This general function enters log to the log
file.

assign_to_cuda_device(device : Cuda) This function assigns each object to the
Cuda.

get_init_weight() : NN.Weight Returns to the initial weights of the CNN for
easy convergence.

 30

save_current_model() Saves the current model.

Class Trainer_CNN

This class implements the training procedure of the model. The sole reason for this functionality
to be implemented as a separate class is ease of use.

Attributes

private int[] training_dataset

private int[] validation_dataset

private Compose transform_train

private Compose transform_val

private CrossEntropy criterion

private optim.Adam optimizer

private int[] losses

private int[] validation_losses

private int epochs

private int batch_size

private Double learning_rate

private Double train_validation_split_ratio

private String dataset_path

private Boolean print_initial_dataset

private Boolean plot_loss_and_corrects

 31

Methods

train_Adam() implements the entire training procedure of
the model.

get_traning_dataset() : ImageFolder Returns the training set.

get_val_dataset() : ImageFolder Returns the validation set.

Class Tester_CNN

This class implements the testing procedure of the model and calculates the evaluation
matrices.

Attributes

private int[] test_dataset

private Compose transform_test

Methods

test() Tests the model with the test set and
calculates the evaluation matrices.

get_test_dataset() : ImageFolder Returns the test set.

plot_test_results() Plots the evaluation metrics.

Class Helper_Functions

This class is a helper class used by most classes in this subsystem. It implements general
purpose functionalities such as printing, plotting, and converting images. Its implementation
simplifies the subsystem.

Methods

image_convert_to_numpy(tensor) : np.array Converts PiLImage (tensor) to the numpy
array.

show_images(images, labels, classes,
predictions)

Displays the given image.

plot_loss_and_corrs(epochs, loss, cor, val_loss,
val_cor)

Plots the loss and corrects of the training
procedure.

label_sample_image(sample_img, box_coors,
pol) : PilImage

Draws rectangular boxes around the labeled
pollens.

 32

3.2.2 Data Tier

3.2.2.1 Database Subsystem

Class AcademicModel

Contains the class of AcademicModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from the
database.

Attributes

private int academic_id

private String name

private String surname

private String appellation

private String job

private String mail

private String institution

private String password

private Image photo

private String research_gate_link

 33

Class SampleModel

Contains the class of SampleModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from the
database.

Attributes

private int sample_id

private int academic_id

private Image sample_photo

private Date date

private int location_latitude

private int location_longitude

private String analysis_text

private Boolean publication_status

private Boolean anonymous_status

private String research_gate_link

private List<PollenTypeModel,int> pollens

 34

Class PollenTypeModel

Contains the class of PollenTypeModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from the
database.

Attributes

private String pollen_name

private String explanation_text

Class FeedbackModel

Contains the class of FeedbackModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from the
database.

Attributes

private int feedback_id

private String name

private int academic_id

private String email

private String text

private Date date

private String status

 35

Class Databas_Manager

This class is the main processor of the Database Subsystem. It is used to connect to the
database, initialize it and then execute commands for utilizing the database. It uses other Model
classes to send and receive data from the database, in which the tables correspond with the
model objects.

Attributes

private Connection db

private Cursor cursor

Methods

Database_Manager(initialize_database :
boolean = false)

Initializes database

connect_database() Connects to database.

delete_tables() Drops all tables in the database.

create_tables() Creates tables in the database with
predetermined attributes and table names.

initialize_pollen_types() Populates the pollen table with tuples.

get_academic_from_id(academic_id : int) :
Database Subsystem.AcademicModel

Returns the academic user tuple in the
database with the given id.

get_academic_from_email(email : String) :
Database Subsystem.AcademicModel

Returns the academic user tuple in the
database with the given email.

get_pollen_type(name : String) : Database
Subsystem.PollenTypeModel

Returns the pollen with the given name in
the database.

get_sample(sample_id : int) : Database
Subsystem.SampleModel

Returns the sample tuple in the database
with the given id.

get_samples_of_academic(academic_id : int) :
Database Subsystem.SampleModel []

Returns all the samples uploaded by the
academic user with the given id.

get_samples_of_location(location_latitude : int,
location_longitude : int) : Database
Subsystem.SampleModel []

Returns all the samples in the database with
the given coordinates.

get_all_samples() : Database Return all the samples in the database.

 36

Subsystem.SampleModel []

get_total_sample_num() : int Returns the number of samples in the
database

get_feedback_from_id(feedback_id : int) :
Database Subsystem.FeedbackModel

Returns the feedback tuple with the given id.

get_feedback_from_email(email : String) :
Database Subsystem.FeedbackModel

Returns the feedback tuple with the given
email.

add_feedback(feedback : Database
Subsystem.FeedbackModel) : boolean

Creates and adds a new feedback tuple into
the database. Returns true if successful,
otherwise false.

delete_feedback(feedback_id : int) : boolean Deletes the feedback tuple with the given id.
Returns true if successful, otherwise false.

add_academic(academic : Database
Subsystem.AcademicModel) : boolean

Creates and adds a new academic tuple into
the database. Returns true if successful,
otherwise false.

delete_academic(academic_id : int) : boolean Deletes the academic tuple with the given id.
Returns true if successful, otherwise false.

delete_academic_from_email(email : String) :
boolean

Deletes the academic tuple with the given
email. Returns true if successful, otherwise
false.

add_sample(sample : Database
Subsystem.SampleModel) : boolean

Creates and adds a new sample tuple into
the database. Returns true if successful,
otherwise false.

delete_sample(sample_id : int) : boolean Deletes the sample tuple with the given id.
Returns true if successful, otherwise false.

add_pollen_type(pollenType : Database
Subsystem.PollenTypeModel) : boolean

Creates and adds a new pollen type tuple
into the database. Returns true if successful,
otherwise false.

delete_pollen_type(pollen_name : String) :
boolean

Deletes the pollen type tuple with the given
name. Returns true if successful, otherwise
false.

update_academic(academic : Database
Subsystem.AcademicModel) : boolean

Updates academic tuple with the given
parameters. Returns true if successful,
otherwise false.

update_pollen_type_description(pollen :
Database Subsystem.PollenTypeModel) :
boolean

Updates pollen type tuple with the given
parameters. Returns true if successful,
otherwise false.

 37

print_academic_table() Prints the academic table and its tuples

print_sample_table() Prints the sample table and its tuples

print_pollen_type_table() Prints the pollen type table and its tuples

print_sample_has_pollen_table() Prints the sample_has_pollen table and its
tuples

print_feedback_table() Prints the feedback table and its tuples

 38

4. Extraction Process

The pollen extraction from a given sample image is summarized in the following image
with the gray scaling, dilation, thresholding, labeling, cropping, classification, and
analyzed imaged construction.

Figure 5: The Process

 39

5. References

[1] “7 ways to reduce server response time,” Knowledge Base by phoenixNAP, 24-Jun-

2021. [Online]. Available: https://phoenixnap.com/kb/reduce-server-response-
time. [Accessed: 26-Feb-2022].

[2] “Global Desktop Browser Market Share for 2022,” Kinsta®, 07-Oct-2021. [Online].

Available: https://kinsta.com/browser-market-share/. [Accessed: 26-Feb-2022].

[3] K. Fakhroutdinov, “The Unified Modeling Language,” UML Diagrams - overview,

reference, and examples. [Online]. Available: https://www.uml-diagrams.org/.
[Accessed: 26-Feb-2022].

[4] “Use case diagram,” Wikipedia, 30-Oct-2021. [Online]. Available:

https://en.wikipedia.org/wiki/Use_case_diagram. [Accessed: 26-Feb-2022].

[5] “UML sequence diagram tutorial,” Lucidchart. [Online]. Available:

https://www.lucidchart.com/pages/uml-sequence-diagram. [Accessed: 26-Feb-
2022].

[6] “Unified modeling language (UML): Activity Diagrams,” GeeksforGeeks, 13-Feb-2018.

[Online]. Available: https://www.geeksforgeeks.org/unified-modeling-language-
uml-activity-diagrams/. [Accessed: 26-Feb-2022].

[7] A. Athuraliya,“What is a deployment diagram: Deployment diagram tutorial,” Creately

Blog, 27-Sep-2021. [Online]. Available:
https://creately.com/blog/diagrams/deployment-diagram-tutorial/. [Accessed: 26-
Feb-2022].

[8] “Class diagram,” Wikipedia, 08-Dec-2021. [Online]. Available:

https://en.wikipedia.org/wiki/Class_diagram. [Accessed: 26-Feb-2022].

[9] “IEEE Reference Guide.” IEEE Periodicals, New Jersey, 12-Nov-2018.

[10] “Pytorch,” PyTorch. [Online]. Available: https://pytorch.org/. [Accessed: 26-Feb-

2022].

[11] “scikit-image,” scikit. [Online]. Available: https://scikit-image.org/. [Accessed: 26-Feb-

2022].

 40

[12] “React – a JavaScript library for building user interfaces,” – A JavaScript library for
building user interfaces. [Online]. Available: https://reactjs.org/. [Accessed: 26-
Feb-2022].

[13] Django. [Online]. Available: https://www.djangoproject.com/. [Accessed: 26-Feb-

2022].

[14] Google maps platform . [Online]. Available: https://developers.google.com/maps.

[Accessed: 26-Feb-2022].

