
CS 492
Senior Design Project

2022 Spring

Final Report

PolliVidis

Ömer Ünlüsoy - 21702136
Elif Gamze Güliter - 21802870

İrem Tekin - 21803267
Ece Ünal - 21703149

Umut Ada Yürüten - 21802410

Supervisor: Ercüment Çiçek
Jury Members: Shervin Arashloo and Hamdi Dibeklioglu

This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfillment of the requirements of the Senior Design Project course CS491/2.

 2

Table of Contents

1.	Introduction	..	5	

1.1	Overview	...	6	

1.2	Interface	Documentation	Guidelines	..	6	

1.3	Engineering	Standards	...	7	

1.4	Definitions,	Acronyms,	and	Abbreviations	..	8	

2.Requirement	Details	...	9	

2.1	Functional	Requirements	..	9	
2.1.1	System	Functionality	..	9	
2.1.2	User	Functionality	..	9	

2.2	Nonfunctional	Requirements	...	10	
2.2.1	Usability	...	10	
2.2.2	Reliability	..	10	
2.2.3	Privacy	and	Security	...	10	
2.2.4	Efficiency	...	10	
2.2.5	Accessibility	...	10	
2.2.6	Extensibility	...	11	

2.3	Pseudo	Requirements:	...	11	
2.3.1	Version	Control	and	Management:	..	11	
2.3.2	Implementation	..	11	

3.	Final	Architecture	and	Design	Details	..	12	

3.1.	Packages	...	12	
3.1.0	Introduction	...	12	
3.1.1	Client	...	14	
3.1.2	Server	..	16	
3.1.2.1	Logic	Tier	...	16	
3.1.2.2	Data	Tier	..	21	

3.2.	Class	Interfaces	..	23	
3.2.0	Introduction	...	23	
3.2.1	Client	...	23	
3.2.1.1	Presentation	Tier	...	23	
3.2.2	Server	..	29	
3.2.2.1	Logic	Tier	...	29	
3.2.2.2	Data	Tier	..	41	

3.3	APIs	and	Tools	Used	..	46	
3.3.1	Django	REST	API	Framework	...	46	
3.3.2	Google	Firebase	Storage	Service	...	46	
3.3.3	PyTorch	..	46	
3.3.4	ScKit	Learn	...	47	
3.3.5	Cv2	...	47	

 3

3.3.6	Matplotlib	..	47	
3.3.7	MySQL	...	47	
3.3.8	Dijkstra	Server	..	47	
3.3.9	React	..	48	
3.3.10	Google	Maps	API	..	48	

4.	Development	and	Implementation	Details	...	49	

4.1	Image	Processing	Implementation	..	49	

4.2	Machine	Learning	Implementation	...	52	

4.3	Backend	and	Database	Implementation	..	56	

4.4	UI	Implementation	..	58	

5.	Testing	Details	..	60	

5.1	Testing	of	Image	Processing	Procedure	...	60	

5.2	Testing	of	Machine	Learning	Procedure	..	60	

5.3	Testing	of	Backend	and	Frontend	..	60	

6.	Maintenance	Plan	and	Details	..	61	

7.	Other	Project	Elements	..	61	

7.1	Consideration	of	Various	Factors	in	Engineering	Design	...	61	

7.2	Ethics	and	Professional	Responsibilities	...	64	

7.3	Judgements	and	Impacts	to	Various	Contexts	..	64	

7.4	Teamwork	Details	..	67	
7.4.1	Ömer	Ünlüsoy	..	67	
7.4.2	Gamze	Güliter	..	67	
7.4.3	 İrem	Tekin	...	67	
7.4.4	 Ece	Ünal	..	67	
7.4.5	Umut	Ada	Yürüten	...	67	

7.5	New	Knowledge	Acquired	and	Applied	..	68	

8.Conclusion	and	Future	Work	..	68	

9.	User	Manual	and	Installation	..	69	

9.1	About	Installation	..	69	

9.2	Pollen	Map	..	69	

9.3	Registration	(Sign	Up)	..	70	

9.4	Academic	Login	...	71	

9.5	Navigation	Menu	without	Academic	Login	..	72	

9.6	Navigation	Menu	with	Academic	Login	..	72	

 4

9.7	Analyze	Sample	Page	..	73	
9.7.1	Upload	Image	Page	..	75	
9.7.2	Analysis	Report	Page	...	75	

9.8	Previous	Analyses	Page	...	76	

9.9	Profile	Page	..	77	

9.10	About	Us	Page	...	78	

9.11	Download	Dataset	Page	...	79	

9.12	Feedback	Page	..	79	

9.13	How	PolliVidis	Works	Page	..	80	

10.References	...	81	

 5

1. Introduction
Along with the developments in machine learning, most systems in natural sciences are
transforming into automated models. Nevertheless, currently there is no available model
to identify pollen species for palynology, the branch of biology which examines pollens.
Methodology to identify and count pollen species in a light microscope sample has not
changed since the invention of microscopy, the brute force method requiring one
palynologist to count each pollen on the sample one by one. Additionally, training new
students to identify pollens requires further effort, especially distinguishing pollens with
similar granular cell structures.

There are millions of people having seasonal pollen allergies. That’s why most weather
reports try to give the current pollen densities in the air regionally. However, such
information requires palynologists to take samples from the air and analyze the sample
with brute force daily, which takes hours. Such restriction in the pollen analysis hinders a
proper weather report and decreases the life quality of the people with pollen allergies.

Although there have been attempts to create such a machine learning model in order to
identify pollen in a given data, currently there is no widely available model to identify pollen
types for palynology. This conclusion created PolliVidis, the first and only website for
palynologists, palynology students, and people with pollen allergies to analyze their pollen
sample with a trained deep learning architecture and share their pollen analysis with
everyone, accelerating the developments in palynology. With the system we will develop,
we aim to fill the role of a publicly available web application for pollen identification in
Turkey which would help academics to easily classify the pollen they research and
furthermore aid students trying to learn the details of palynology.

Beside the trained deep learning architecture, PolliVidis offers a Pollen Map where every
analysis shows up to create an accumulated regional pollen density information for the
people with pollen allergies.

We have decided to take the challenging road and to create our own pollen dataset from
scratch. A little research showed that the largest pollen research in Turkey is being
conducted by Ankara University. Our team has contacted Researcher Aydan Acar at
Ankara University and convinced them to do a joint study. She has taught us how to use
a light microscope and given us access to her pollen species collection. We have selected
the most famous and allergenic pollen species in Turkey for this dataset. Over six months,
our team has collected 23 different species and more than 6.000 single pollen samples.
Hence, along with the web application, PolliVidis publishes a dataset of 6000 pollen
samples which was not available before.

 6

1.1 Overview
PolliVidis is a pollen classification platform for academics, students and people with pollen
allergies. It is a web application which makes it widely accessible to interested users.
PolliVidis provides a pollen map built by the academic community’s pollen analyses.
Moreover, it allows data sharing between academics which will contribute to building a
vast pollen database and help palynology research. Furthermore, PolliVidis has three
main promises: classification and analysis of given pollen samples with a trained ML
model, creation of a PolliVidis database which can help further palynology research and
academic information exchange, and construction of a pollen map of Turkey. In addition,
using the pollen map people with pollen allergies can track the frequency dates, and
locations of these pollen and schedule their visits. In PolliVidis everyone, without the need
of an account, is able to access the pollen map and learn our analysis, allergenic pollen
information based on time and location. Moreover, everyone can use our model to
analyze their own pollen sample via the website. However, only academics can update
the pollen map with their samples and uploading data to the map requires an academic
account. Login into these academic accounts is required to protect the accuracy and the
reliability of the map. Furthermore, the pollen analysis consists of pollen classification and
counting. After uploading a sample, the user can learn the pollen types and their ratio
(number) in their samples. If academics agree to share their sample analysis, the pollen
map will be updated with their analysis. Moreover, students are also able to use the
PolliVidis for educational purposes, such as uploading pollen photos and learning their
type without consulting their instructor.

1.2 Interface Documentation Guidelines
The following template is used for each class definition in this report. The class name and the
description are stated first, then the attributes of the class are given and finally methods of the
class are explained.
Class Name

Class Description

Attributes

Attribute Type : Attribute Name

Methods

MethodName (Parameters) : Return Type Method Description

 7

1.3 Engineering Standards

Final Report diagrams follow the UML guidelines [1] as the previous reports of PolliVidis.

Until this report; PolliVidis has used UML Use Case Diagram to describe user interactions
with the web application [2], UML Sequence Diagram to describe the lifeline of an object
[3], UML Activity Diagram to describe the control flow of the system [4], and UML
Deployment Diagram to define the hardware communication of the system [5] and UML
Class Diagram to describe statically the structure of the system [6]. As the usage of UML
is standard in the industry, all diagrams follow the UML guidelines.

For the citations in the reports, IEEE Citation guidelines are followed as it is the standard
in engineering [7].

 8

1.4 Definitions, Acronyms, and Abbreviations

Palynology: Branch of biology studying pollen.

Academic: User with a pollen or biology related background such as palynologists,
biologists, and palynology or biology students.

Allergenic Pollen: Specific pollen types that humans can develop allergies to.

Sample / Pollen Sample: Pollen image shot by a light microscope containing a few
pollens.

Noise: All other shapes in the sample rather than pollen itself such as spores.

Sample Analysis: Procedure of identifying pollen types, classification, from a sample
using machine learning.

Analysis Report: Report containing pollen information generated by the pollen analysis.

Pollen Map: Google Maps supported map showing pollen information and distribution of
Turkey.

Pollen Extraction: Process of extracting a single pollen image from the sample with few
pollens using the Pollen Extraction Algorithm coded by us.

(Ankara) Dataset: Pollen dataset, collection of pollen images, created by us in Ankara
University.

PolliVidis Database: MySQL based database to store all (allowed) uploaded pollen
samples with their analyses in order to construct the Pollen Map.

CNN: Convolutional Neural Networks

Transfer Learning: Using pre-trained networks such as AlexNet or VGG-19 to boost the
classification.

Data Augmentation: Manipulating dataset to avoid overfitting and increasing accuracy.

Google Maps API: used API for the Pollen Map of PolliVidis.

Django: Python package for website backend.

React: JavaScript library for website frontend.

MySQL: Relational database management system for SQL.

 9

2.Requirement Details

2.1 Functional Requirements

2.1.1 System Functionality

The system should:
● detect and classify allergen pollen types found in Turkey.
● should count the pollen types and density in the uploaded pollen samples.
● display the sample analysis report after the sample upload.
● require academic registration for academic usage.
● not require registration for pollen analysis.
● not require registration for pollen map usage.
● allow any user to upload pollen sample to analyze.
● should store the pollen samples that are uploaded by academic users.
● display pollen map supported by Google Maps.
● display pollen samples and their analyses reports on the map.
● allow academics to look through the pollen analyses with its publisher
information.

2.1.2 User Functionality

The academic user should:
● register to the system with required information.
● login in order to contribute to the Pollen Map.
● view other pollen samples and their analysis with its publisher information.
● upload pollen samples to analyze.
● able to see the count, density, and the species of the sample from the analysis.
● look through the pollen analyses with its publisher information.

The anonymous user should:
● not register to the system to analyze any pollen samples.
● not register to the system to look through the Pollen Map.

 10

2.2 Nonfunctional Requirements

2.2.1 Usability
 The system should:

● be able to work on most search engines such as Safari, Chrome, Firefox, and
Mozilla.
● yield an analysis with the pollen samples taken under a light microscope within
10 seconds.
● allow pollen analysis without any registration or login.
● allow Pollen Map usage without any registration or login

2.2.2 Reliability
The system should
● ensure that the pollen map data that it offers is reliable and obtained from a
palynologist or academic’s samples.
● ensure reliable results (more than %98 accuracy) for the pollen classification.
● should not lose any pollen data unless the user deletes or doesn’t let data to be
added to the database

2.2.3 Privacy and Security
The system should:
● require passwords that contain uppercase and lowercase letters, and have at
least 8 characters with a mixture of both numbers and letters.
● ensure that the user’s data is safe by not storing their password directly but
hashing it with the Google recommended hashing algorithm SHA-256 [8]
● get permission from academic users to share the location and the date of the
samples with other users.
● not require any personal information from unregistered users to analyze pollen
and look through the pollen map.

2.2.4 Efficiency
● The webpage’s loading time should not exceed 2 seconds which is the maximum
loading time recommended by Google [9].
● Analysis will be conducted on the server rather than the user's own computer
which should decrease memory usage.

2.2.5 Accessibility
 The system should be:

 11

● available on most used internet browsers (Safari, Chrome, Firefox, Microsoft
Edge, and Mozilla).

2.2.6 Extensibility
● The ML model can be improved in the future with more datasets available.
● The allergenic pollen in Turkey will be examined to scale the project. However,
the pollen types can be increased in the future.
 ● Pollen Map is based on Turkey where the examined pollen is located. This map
can be extended as global in the future.

2.3 Pseudo Requirements:

2.3.1 Version Control and Management:
● GitHub and Git will be used for version control.
● Google Docs will be used and will be used for project management and source
sharing.
● Google CoLab will be used for collaboratory implementations
● GitHub pages will be used as a project website.

2.3.2 Implementation
● PolliVidis will be implemented as a website.
● The system will have server-client architecture.
● Python will be used in the back-end.
● For the Machine Learning model, CNN will be used.
● PyTorch package will be used for implementing convolutional neural networks.
● Python Django and React frameworks will be used for building the website.
● MySQL will be used in database design.
● AlexNet pre-trained model was used as transfer learning strategy
● All dataset will be collected by us, in Ankara University Science Faculty labs.
● Dataset will be stored in the database of the project written in MySQL.
● Object Oriented Programming (OOP) paradigms was followed during the

implementation

 12

3. Final Architecture and Design Details

3.1. Packages

3.1.0 Introduction
PolliVidis takes advantage of some external packages, libraries, which allow the system to be
more dynamic and optimized while taking away the burden to code everything from scratch.

The first and the most significant package PolliVidis uses is PyTorch [10]. This package is a
machine learning package developed by Facebook, allowing its users to construct and train
neural networks easily. PolliVidis will use this package to architect its CNN and train it with the
dataset we created.

The second package is SCikit-Image which PolliVidis uses for pollen extraction from sample
images. It is basically an image processing toolbox [11].

For the frontend, PolliVidis uses React Library [12]. React is a JavaScript library for building
user interfaces easily.

To connect the UI with the database and ML model, PolliVidis has taken advantage of the
Django framework which allows its users to create web apps and connect them with their server
[13].

Lastly, Google Maps API is used for PolliVidis Pollen Map [14]. This API allowed us to construct
and modify a web app in PolliVidis website.

After explaining the external packages used, let’s see the internal structure of the web app.
PolliVidis mimics 3-Tier Client/Server Architecture.

On the client side, the system implements the Presentation Tier which contains the UI
Subsystem. This subsystem is implemented with React and manages UI components. This
subsystem sends queries to the server to handle user requests and shows the results of the
queries to the user.

On the server side of the system, the system implements Logic and Data Tiers. In the Logic
Tier, there are two subsystems, namely Backend Subsystem and ML Subsystem. Backend
Subsystem is implemented with the Python Django Framework. It directs queries coming from
the client side to the Data Tier and handles user requests. This subsystem uses the ML
Subsystem to extract pollen images from the sample image and analyze them one by one. It
returns the analyses to the user.

 13

ML Subsystem is the core of PolliVidis and implements two main functionalities, pollen
extraction from the sample image and pollen classification with PyTorch. The classification is
done by a CNN and pollen extraction uses Image Processing with the SCikit-Image package.

In the Logic Tier, a single subsystem named Database Subsystem handles database
interactions of PolliVidis. It implements the MySQL database and all queries within it and
supplies Python Model classes for ease of use.

 14

3.1.1 Client

3.1.1.1 Presentation Tier

3.1.1.1.1 UI Subsystem

UI Subsystem consists of user interface front-end views.

3.1.1.1.1.1 Path Manager

Path Manager handles the navigation and main structure of the frontend. It controls the
presentation tier.

3.1.1.1.1.2 AnalyzeSampleView

AnalyzeSampleView handles the user interface of the screen in which users upload sample
images and request an analysis.

Figure 1: UI Subsystem

 15

3.1.1.1.1.3 AnalysisReportView

AnalysisReportView handles the user interface of the screen in which the analysis report of the
users’ samples is shown.

3.1.1.1.1.4 PollenMapView

PollenMapView handles the user interface of the Google Maps pollen map which contains the
pollen analyses as markers. When clicked on one, the analysis report of the analysis is shown.

3.1.1.1.1.5 PreviousAnalysisView

PreviousAnalysisView handles the user interface of the screen in which an academic’s previous
analysis reports are shown.

3.1.1.1.1.6 AcademicLoginView

AcademicLoginView handles the user interface of the screen in which an academic can login.

3.1.1.1.1.7 AcademicSignUpView

AcademicSignUpView handles the user interface of the screen in which a user can sign up as
an academic.

3.1.1.1.1.8 AcademicProfileView

AcademicProfileView handles the user interface of the screen that shows the profile information
of an academic.

3.1.1.1.1.9 AboutUsView

AboutUsView handles the user interface of the screen that shows PolliVidis developers’
information.

3.1.1.1.1.10 GiveFeedBackView

GiveFeedBackView handles the user interface of the screen in which users can send feedback
about PolliVidis.

 16

3.1.2 Server

3.1.2.1 Logic Tier

3.1.2.1.1 Backend Subsystem

Backend Subsystem mainly consists of firstly model objects used both in data and client level,
secondly the serializer classes of the model objects for Http responses to the front end, and
lastly the handler classes that process the request and respond accordingly.

3.1.2.1.1.1 Academic
Contains the class of Academic model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

Figure 2: Backend Subsystem

 17

3.1.2.1.1.2 Sample
Contains the class of Sample model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

3.1.2.1.1.3 PollenType
Contains the class of PollenType model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

3.1.2.1.1.4 Feedback
Contains the class of Feedback model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

3.1.2.1.1.5 Models
Contains the general class for models that is recognized by the REST django API.

3.1.2.1.1.6 AcademicSerializer
Contains a serializable version of the Academic class which is used to convert the Academic
objects into proper Http Response bodies.

3.1.2.1.1.7 SampleSerializer
Contains a serializable version of the Sample class which is used to convert the Academic
objects into proper Http Response bodies.

3.1.2.1.1.8 PollenTypeSerializer
Contains a serializable version of the PollenTypeclass which is used to convert the Academic
objects into proper Http Response bodies.

3.1.2.1.1.9 FeedbackSerializer
Contains a serializable version of the Feedback class which is used to convert the Academic
objects into proper Http Response bodies.

3.1.2.1.1.10 Serializer
Contains the general class for serializer classes that is recognized by the REST django API.

3.1.2.1.1.11 request_handler.urls
This class handles requests that arrive from the client side of the project. This class maps the
given url to the respective handler, and redirects to that file. Although most of the requests are
directed to the main API, this handler allows debugging via redirecting to admin pages.
Furthermore, this file could be expanded to include different types of requests from different
types of users.

 18

3.1.2.1.1.12 urls
Much like the request_handler package in 2.2.1.1.11, this class maps request urls. However,
unlike its counterpart, this url handler maps the Http requests to their respective functions in
views file as it is explained in 2.2.1.1.13.

3.1.2.1.1.13 views
This class is the central part of the backend subsystem and contains functions that handles,
processes and responds to the requests made by the client level. As explained in 2.2.1.1.12,
urls class redirects a request to a proper function in this class. In each function, the request is
transformed and acknowledged with proper Model classes. Next, methods from
Database_Manager are used for database operations. Details of the Database_Manager are
further explained in 2.2.2.1, hence it is represented as a blackbox class. After acquiring the
results from the database, an HttpResponse is formed via Serializer classes and then sent back
to client side.

 19

3.1.2.1.2 ML Subsystem

ML Subsystem has two main functionalities; pollen classification with PyTorch and pollen image
extraction from the incoming sample image.

3.1.2.1.2.1 ML Manager
ML Manager class is the driver class of this subsystem, it uses Pollen Extraction and ConvNN
classes to respond to a client request. Thus, it handles the two main functionalities of this
subsystem, namely pollen classification and pollen image extraction. This manager class holds
the trained model and uses ConvNN class to predict and classify the incoming pollens from the
client. Moreover, it processes the sample image and extracts pollen images using the Pollen
Extraction class.

3.1.2.1.2.2 Pollen Extraction

Figure 3: ML Subsystem

 20

This class implements the pollen extraction algorithm, using image processing and dilation with
Python SCikit-Image package. This extraction algorithm is used in two scenarios; when the
pollen dataset of PolliVidis is prepared and ready to be pre-processed before going into the
training algorithm, and when the client sends a sample image with a few pollens in it required to
be pre-processed before the classification. Thus, this class can process a single image and
folders of images at the same time. The procedure of this algorithm is explained in detail in
another section of this report.

3.1.2.1.2.3 ConvNN
ConvNN is the class of the ML model which implements the Convolutional Neural Network. This
class holds the hyperparameters of the architecture, uses Trainer class to train its model, and
saves the trained model for later use. The predictions of the model are made in this class.

3.1.2.1.2.4 Trainer_CNN
This class implements the training procedure of the model. The sole reason for this functionality
to be implemented as a separate class is ease of use.

3.1.2.1.2.5 Tester_CNN
This class implements the testing procedure of the model and calculates the evaluation
matrices.

3.1.2.1.2.6 Helper_Functions
This class is a helper class used by most classes in this subsystem. It implements general
purpose functionalities such as printing, plotting, and converting images. Its implementation
simplifies the subsystem.

 21

3.1.2.2 Data Tier

3.1.2.2.1 Database Subsystem
Database Subsystem deals with the usage and the management of the database for the
application.

Figure 4: Database Subsystem

 22

3.1.2.2.1.1 AcademicModel
Contains the class of AcademicModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from the
database.

3.1.2.2.1.2 SampleModel
Contains the class of SampleModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from the
database.

3.1.2.2.1.3 PollenTypeModel
Contains the class of PollenTypeModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from the
database.

3.1.2.2.1.4 FeedbackModel
Contains the class of FeedbackModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from the
database.

3.1.2.2.1.5 Database_Manager
This class is the main processor of the Database Subsystem. It is used to connect to the
database, initialize it and then execute commands for utilizing the database. It uses other Model
classes to send and receive data from the database, in which the tables correspond with the
model objects.

 23

3.2. Class Interfaces

3.2.0 Introduction
In the Class Interfaces section, attributes and methods of each class will be given with the
method signatures and detailed explanations.

3.2.1 Client

3.2.1.1 Presentation Tier

3.2.1.1.1 UI Subsystem

Class PathManager

Path Manager handles the navigation and main structure of the frontend. It controls the
presentation tier.

Attributes

private React Component[] components

private String[] pathNames

Methods

void assignPaths() Assigns paths to components (pages)

Class AnalyzeSampleView

AnalyzeSampleView handles the user interface of the screen in which users upload sample
images and request an analysis.

Attributes

private boolean popupOpen

private file selectedImage

Private int id

 24

Private boolean goAnalysisPage

Private Date date

Private float lng

Private float lat

Methods

void handleClickOpen() Opens the popup screen for selecting
image

void handleClose() Closes the popup screen for selecting
image

void setSelectedImage() Sets the attribute selected image

void setDate(Date date) Sets the attribute date

void setId(int id) Sets the attribute id

void setLat(float lat) Sets the attribute lat

void setLng(float lng) Sets the attribute lng

Void handleDeleteImage() Deletes the selected image, sets selected
image null

Void submitHandler() Sends the selected image, date, lat, lng, id
to the server

Class AnalysisReportView

AnalysisReportView handles the user interface of the screen in which the analysis report of
the users’ samples is shown.

Attributes

Private JSON Object analysis

Methods

void setAnalysis(JSON Object analysis) Sets the analysis information coming from
the server to the attribute analysis

 25

Class PollenMapView

PollenMapView handles the user interface of the Google Maps pollen map which contains the
pollen analyses as markers. When clicked on one, the analysis report of the analysis is
shown.

Attributes

Private Marker[] markers

Private boolean selected

Private boolean open

Methods

Void setMarkers(Marker[] markers) Sets the marker locations coming from the
server to the markers array

Void setSelected(boolean selected) Sets the attribute selected. Used when a
marker is clicked by the user.

Void setOpen(boolean open) Sets the attribute open. Opens a left
drawer when a marker is clicked and
shows analysis information corresponding
to that marker.

Class PreviousAnalysesView

PreviousAnalysisView handles the user interface of the screen in which an academic’s
previous analysis reports are shown.

Attributes

Private int academicId

Private JSON Object[] analyses

Methods

void setAnalyses(JSON Object[] analyses) Sets the previous analyses information
coming from the server to the attribute
analyses

 26

Void setAcademicId(int academicId) Sets the attribute academicId

Class AcademicLoginView

AcademicLoginView handles the user interface of the screen in which an academic can login.

Attributes

Private String email

Private String password

Methods

void handleSubmit() Send email and password information to
the server

Void setEmail(String email) Sets the attribute email

Void setPassword(String password) Sets the attribute password

Class AcademicSignUpView

AcademicSignUpView handles the user interface of the screen in which a user can sign up as
an academic.

Attributes

Private String fullName

Private String appellation

Private String password

Private String email

Private String institution

Methods

void setFullName(String fullName) Sets the attribute fullName

 27

void setAppellation(String appellation) Sets the attribute appellation

void setPassword(String password) Sets the attribute password

void setEmail(String email) Sets the attribute email

void setInstitution(String institution) Sets the attribute institution

Void clearForm() Sets all the attributes to null

Class AcademicProfileView

AcademicProfileView handles the user interface of the screen that shows the profile
information of an academic.

Attributes

Private String fullName

Private String appellation

Private file image

Private String email

Private String institution

Methods

void setFullName(String fullName) Sets the attribute fullName

void setAppellation(String appellation) Sets the attribute appellation

void setEmail(String email) Sets the attribute email

void setInstitution(String institution) Sets the attribute institution

Void setImage(file image) Sets the attribute image

 28

Class AboutUsView

AboutUsView handles the user interface of the screen that shows PolliVidis developers’
information.

Attributes

Private file groupImage

Methods

void setGroupImage(file groupImage) Sets the attribute groupImage

Class GiveFeedBackView

GiveFeedBackView handles the user interface of the screen in which users can send
feedback about PolliVidis.

Attributes

Private String comment

Private String email

Methods

void setComment(String comment) Sets the attribute comment

void setEmail(String email) Sets the attribute email

Void sendFeedBack() Sends the comment and email information
to the server

 29

3.2.2 Server

3.2.2.1 Logic Tier

3.2.2.1.1 Backend Subsystem

Class Academic

Contains the class of Academic model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

Attributes

private int academic_id

private String name

private String surname

private String appellation

private String job

private String mail

private String institution

private String password

private Image photo

private String research_gate_link

 30

Class Sample

Contains the class of Sample model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

Attributes

private int sample_id

private int academic_id

private Image sample_photo

private Date date

private int location_latitude

private int location_longitude

private String analysis_text

private Boolean publication_status

private Boolean anonymous_status

private String research_gate_link

private List<PollenTypeModel,int> pollens

 31

Class PollenType

Contains the class of PollenType model which has been used both in client and data level. It
is used for keeping consistency in all levels as well as defining the Http response for the client
side.

Attributes

private String pollen_name

private String explanation_text

Class Feedback

Contains the class of Feedback model which has been used both in client and data level. It is
used for keeping consistency in all levels as well as defining the Http response for the client
side.

Attributes

private int feedback_id

private String name

private int academic_id

private String email

private String text

private Date date

private String status

 32

Class Models

Contains the general class for models that is recognized by the REST django API.

Attributes

private List<Field> fields

Class AcademicSerializer

Contains a serializable version of the Academic class which is used to convert the Academic
objects into proper Http Response bodies.

Attributes

private Academic model

private String[] fields

Class SampleSerializer

Contains a serializable version of the Sample class which is used to convert the Academic
objects into proper Http Response bodies.

Attributes

private Sample model

private String[] fields

 33

Class PollenTypeSerializer

Contains a serializable version of the PollenType class which is used to convert the Academic
objects into proper Http Response bodies.

Attributes

private PollenType model

private String[] fields

Class FeedbackSerializer

Contains a serializable version of the Feedback class which is used to convert the Academic
objects into proper Http Response bodies.

Attributes

private Feedback model

private String[] fields

Class Serializer

Contains the general class for serializer classes that is recognized by the REST django API.

Attributes

private Models model

Methods

serialize(parameter : List <Fields>) Serializes the given model according to the
its fields

 34

Class request_handler.urls

This class handles requests that arrive from the client side of the project. This class maps the
given url to the respective handler, and redirects to that file. Although most of the requests are
directed to the main API, this handler allows debugging via redirecting to admin pages.
Furthermore, this file could be expanded to include different types of requests from different
types of users.

Attributes

private List<String, File> urlpatterns

Methods

path(url : String, redirection : File) Redirects given string url to mapped file

Class urls

Much like the request_handler package in 2.2.1.1.11, this class maps request urls. However,
unlike its counterpart, this url handler maps the Http requests to their respective functions in
views file as it is explained previously.

Attributes

private List<String, File> urlpatterns

Methods

path(url : String, redirection : Function) Redirects given string url to the mapped
function

 35

Class views

This class is the central part of the backend subsystem and contains functions that handles,
processes and responds to the requests made by the client level. As explained in 2.2.1.1.12,
urls class redirects a request to a proper function in this class. In each function, the request is
transformed and acknowledged with proper Model classes. Next, methods from
Database_Manager are used for database operations. Details of the Database_Manager are
further explained in 2.2.2.1, hence it is represented as a blackbox class. After acquiring the
results from the database, an HttpResponse is formed via Serializer classes and then sent
back to the client side.

Methods

analyses_post(request : HttpRequest) :
HttpResponse <Boolean>

Inserts the given analysis to the database.
Returns true if successful, otherwise false

analyses_get_by_id(pk : int) : HttpResponse
<SampleSerializer>

Returns the analysis with the given id

get_all_samples() : HttpResponse
<SampleSerializer>

Returns all uploaded samples from the
database

login(request : HttpRequest <Academic>) :
HttpResponse <Boolean>

Attempts to find matching Academic in the
database. Returns the user if found, null
otherwise.

signup(request : HttpRequest <Academic>) :
HttpResponse <Academic>

Attempts to insert a user into the database.
Returns the user if successful, null
otherwise.

academic_delete(request : HttpRequest, pk :
int) : HttpResponse <Boolean>

Attempts to remove an Academic user with
the given properties. Returns true if
successful, false otherwise.

academic_update(request : HttpRequest
<Academic>) : HttpResponse <Boolean>

Changes the attributes of an Academic
tuple in the database. Returns true if
successful, false otherwise.

feedback_post(request : HttpRequest
<Feedback>) : HttpResponse <Boolean>

Inserts new feedback into the database.
Returns true if successful, false otherwise.

pollen_get(request : HttpRequest <int>) :
HttpResponse <PollenSerializer>

Gets a pollen of PollenType from the
database with the given parameters.
Returns the pollen if successful, null
otherwise.

 36

3.2.2.1.2 ML Subsystem

Class ML_Manager

ML Manager class is the driver class of this subsystem, it uses Pollen Extraction and ConvNN
classes to respond to a client request. Thus, it handles the two main functionalities of this
subsystem, namely pollen classification and pollen image extraction. This manager class
holds the trained model and uses ConvNN class to predict and classify the incoming pollens
from the client. Moreover, it processes the sample image and extracts pollen images using the
Pollen Extraction class.

Attributes

private ConvNN model

Methods

analyze_sample(image, location, date,
academic_name, db, dilation) : PilImage, text

This function gets the image from the client
side via backend and calls ConvNN
forward function to classify each pollen
after extracting them from the sample. It
returns the analyzed image with the
analysis text.

extract_dataset_folder(source_dir, save_dir,
current_folder, dilation, plot)

This function calls the Pollen_Extraction
class to process a dataset folder.

dilation_test(source_dir, current_folder, dilation,
im_num, plot)

This function calls the dilation test of the
extractor.

get_analysis_text(pollens_dict, location, date,
academic_name, db) : String

This function constructs the analysis text
from the classification results.

train_model() This function calls the training procedure of
Training_CNN.

 37

Class Pollen_Extraction

This class implements the pollen extraction algorithm, using image processing and dilation
with Python SCikit-Image package. This extraction algorithm is used in two scenarios; when
the pollen dataset of PolliVidis is prepared and ready to be pre-processed before going into
the training algorithm, and when the client sends a sample image with a few pollens in it
required to be pre-processed before the classification. Thus, this class can process a single
image and folders of images at the same time. The procedure of this algorithm is explained in
detail in another section of this report.

Methods

extract_PIL_Image(image, dilation) : PilImage [] This function extracts pollens from the
single given image and is used for the
client sample images.

extract_folder(source_dir, save_dir, current_fol,
dilation, plot)

This function processes the entire folder for
pollen extraction for the pre-processing for
the training.

dilation_test(source_dir, current_fol, dilation,
im_num)

This function tests for the best dilation
value for a given image.

extract_image(file, filename, save_fol, err_fol,
n_dilation)

This function extracts a single image, and
is called by extract_PIL_Image.

binary_dilation(thresholded_img, n_dilation) :
PilImage

This function applies binary dilation to
given image.

get_image_and_threshold(file_name,
PILImage) : PilImage

This function loads the image from a
filepath and applies thresholding to the
image.

label_image(dil_img, gray_img, or_img,
file_name) : PilImage []

This function labels the binary thresholded
image to separate regions for pollen
extraction.

get_segmented_image(coords, org_img,
file_name) : PilImage

This image applies segmentation.

add_padding(xmax, ymax, xmin, ymin, yorg,
xorg) : int []

This function adds padding to the
segmented image before extracting it.

 38

Class ConvNN

ConvNN is the class of the ML model which implements the Convolutional Neural Network.
This class holds the hyperparameters of the architecture, uses Trainer class to train its model,
and saves the trained model for later use. The predictions of the model are made in this class.

Attributes

private String[] classes

protected Cuda device

private Boolean print_dataset

private Boolean print_testset

private int image_size

private int freeze_AlexNet_layer

private torch.AlexNet model

Methods

forward(X) : int This function is the classic forward method
of CNN, predicts the class of the given
image.

forward_image(image) : int This function applies transformations
before calling the forward method.

load_model() This function loads the model for the later
use by ML_Manager.

initialize_CNN() This function is the main driver function of
this class, it is a procedure of creating
transformations, datasets, and calling
training function.

enter_log(text : String) This general function enters log to the log
file.

assign_to_cuda_device(device : Cuda) This function assigns each object to the
Cuda.

get_init_weight() : NN.Weight Returns to the initial weights of the CNN for
easy convergence.

 39

save_current_model() Saves the current model.

Class Trainer_CNN

This class implements the training procedure of the model. The sole reason for this
functionality to be implemented as a separate class is ease of use.

Attributes

private int[] training_dataset

private int[] validation_dataset

private Compose transform_train

private Compose transform_val

private CrossEntropy criterion

private optim.Adam optimizer

private int[] losses

private int[] validation_losses

private int epochs

private int batch_size

private Double learning_rate

private Double train_validation_split_ratio

private String dataset_path

private Boolean print_initial_dataset

private Boolean plot_loss_and_corrects

 40

Methods

train_Adam() implements the entire training procedure of
the model.

get_traning_dataset() : ImageFolder Returns the training set.

get_val_dataset() : ImageFolder Returns the validation set.

Class Tester_CNN

This class implements the testing procedure of the model and calculates the evaluation
matrices.

Attributes

private int[] test_dataset

private Compose transform_test

Methods

test() Tests the model with the test set and
calculates the evaluation matrices.

get_test_dataset() : ImageFolder Returns the test set.

plot_test_results() Plots the evaluation metrics.

Class Helper_Functions

This class is a helper class used by most classes in this subsystem. It implements general
purpose functionalities such as printing, plotting, and converting images. Its implementation
simplifies the subsystem.

Methods

image_convert_to_numpy(tensor) : np.array Converts PiLImage (tensor) to the numpy
array.

show_images(images, labels, classes,
predictions)

Displays the given image.

plot_loss_and_corrs(epochs, loss, cor, val_loss,
val_cor)

Plots the loss and corrects of the training
procedure.

label_sample_image(sample_img, box_coors,
pol) : PilImage

Draws rectangular boxes around the
labeled pollens.

 41

3.2.2.2 Data Tier

3.2.2.2.1 Database Subsystem

Class AcademicModel

Contains the class of AcademicModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from
the database.

Attributes

private int academic_id

private String name

private String surname

private String appellation

private String job

private String mail

private String institution

private String password

private Image photo

private String research_gate_link

 42

Class SampleModel

Contains the class of SampleModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from
the database.

Attributes

private int sample_id

private int academic_id

private Image sample_photo

private Date date

private int location_latitude

private int location_longitude

private String analysis_text

private Boolean publication_status

private Boolean anonymous_status

private String research_gate_link

private List<PollenTypeModel,int> pollens

 43

Class PollenTypeModel

Contains the class of PollenTypeModel, which has been used both in client and data level. It
is used to acknowledge the data received from the backend as well as sent and acquired from
the database.

Attributes

private String pollen_name

private String explanation_text

Class FeedbackModel

Contains the class of FeedbackModel, which has been used both in client and data level. It is
used to acknowledge the data received from the backend as well as sent and acquired from
the database.

Attributes

private int feedback_id

private String name

private int academic_id

private String email

private String text

private Date date

private String status

 44

Class Databas_Manager

This class is the main processor of the Database Subsystem. It is used to connect to the
database, initialize it and then execute commands for utilizing the database. It uses other
Model classes to send and receive data from the database, in which the tables correspond
with the model objects.

Attributes

private Connection db

private Cursor cursor

Methods

Database_Manager(initialize_database :
boolean = false)

Initializes database

connect_database() Connects to database.

delete_tables() Drops all tables in the database.

create_tables() Creates tables in the database with
predetermined attributes and table names.

initialize_pollen_types() Populates the pollen table with tuples.

get_academic_from_id(academic_id : int) :
Database Subsystem.AcademicModel

Returns the academic user tuple in the
database with the given id.

get_academic_from_email(email : String) :
Database Subsystem.AcademicModel

Returns the academic user tuple in the
database with the given email.

get_pollen_type(name : String) : Database
Subsystem.PollenTypeModel

Returns the pollen with the given name in
the database.

get_sample(sample_id : int) : Database
Subsystem.SampleModel

Returns the sample tuple in the database
with the given id.

get_samples_of_academic(academic_id : int) :
Database Subsystem.SampleModel []

Returns all the samples uploaded by the
academic user with the given id.

get_samples_of_location(location_latitude : int,
location_longitude : int) : Database
Subsystem.SampleModel []

Returns all the samples in the database
with the given coordinates.

get_all_samples() : Database Return all the samples in the database.

 45

Subsystem.SampleModel []

get_total_sample_num() : int Returns the number of samples in the
database

get_feedback_from_id(feedback_id : int) :
Database Subsystem.FeedbackModel

Returns the feedback tuple with the given
id.

get_feedback_from_email(email : String) :
Database Subsystem.FeedbackModel

Returns the feedback tuple with the given
email.

add_feedback(feedback : Database
Subsystem.FeedbackModel) : boolean

Creates and adds a new feedback tuple
into the database. Returns true if
successful, otherwise false.

delete_feedback(feedback_id : int) : boolean Deletes the feedback tuple with the given
id. Returns true if successful, otherwise
false.

add_academic(academic : Database
Subsystem.AcademicModel) : boolean

Creates and adds a new academic tuple
into the database. Returns true if
successful, otherwise false.

delete_academic(academic_id : int) : boolean Deletes the academic tuple with the given
id. Returns true if successful, otherwise
false.

delete_academic_from_email(email : String) :
boolean

Deletes the academic tuple with the given
email. Returns true if successful, otherwise
false.

add_sample(sample : Database
Subsystem.SampleModel) : boolean

Creates and adds a new sample tuple into
the database. Returns true if successful,
otherwise false.

delete_sample(sample_id : int) : boolean Deletes the sample tuple with the given id.
Returns true if successful, otherwise false.

add_pollen_type(pollenType : Database
Subsystem.PollenTypeModel) : boolean

Creates and adds a new pollen type tuple
into the database. Returns true if
successful, otherwise false.

delete_pollen_type(pollen_name : String) :
boolean

Deletes the pollen type tuple with the given
name. Returns true if successful, otherwise
false.

update_academic(academic : Database
Subsystem.AcademicModel) : boolean

Updates academic tuple with the given
parameters. Returns true if successful,
otherwise false.

update_pollen_type_description(pollen :
Database Subsystem.PollenTypeModel) :

Updates pollen type tuple with the given
parameters. Returns true if successful,

 46

boolean otherwise false.

print_academic_table() Prints the academic table and its tuples

print_sample_table() Prints the sample table and its tuples

print_pollen_type_table() Prints the pollen type table and its tuples

print_sample_has_pollen_table() Prints the sample_has_pollen table and its
tuples

print_feedback_table() Prints the feedback table and its tuples

3.3 APIs and Tools Used

3.3.1 Django REST API Framework

REST API is an architectural style for an application program interface that uses HTTP
requests to access and use data and Django allows the implementation and utilization of
REST API by allowing connection to a database and frontend.

3.3.2 Google Firebase Storage Service

In order to achieve image transfer between frontend, backend and machine learning
model, Google Firebase Storage Service was utilized. It also allowed the storage of the
desired analysis images as well as processed images.

3.3.3 PyTorch

PyTorch is an open source machine learning framework that accelerates the path from
research prototyping to production deployment, and it was used to implement the main
machine learning model of the system.

 47

3.3.4 ScKit Learn

For the machine learning model to work properly, a considerable image preprocessing
was necessary. SciKit Learn is a simple and efficient tools for predictive data analysis
which was the most suitable for this task.

3.3.5 Cv2

In the image processing as well as in the machine learning processes, simple and
complex operations were needed. OpenCV provides a real-time optimized Computer
Vision library, tools, and hardware, and allow the aforementioned tasks to be achieved.

3.3.6 Matplotlib

Especially in the testing stage of the machine learning implementation, data need to be
represented and visualized for correct assessment and improvement of the machine
learning model. Matplotlib is a comprehensive library for creating static, animated, and
interactive visualizations in Python, and was utilized as a great tool for testing the machine
learning model and its performance.

3.3.7 MySQL

PolliVidis needs to store the uploaded samples, their analysis, user information, and
pollen details. In order to achieve this a database system is required. MySQL enables
users to meet the database challenges of next generation web, cloud, and
communications services with great scalability and uptime. Furthermore, most of the
members were familiar with MySQL, and hence, it was the choice for the database system
of the project.

3.3.8 Dijkstra Server

In order for the data in the database be synchronous for each user, an online server was
required. Although the database system of choice, MySQL, could be run on a local
machine, a synchronous server which could assist the projects development and testing

 48

was needed. For this purpose, it was decided to build the MySQL database on the Dijkstra
Server in Bilkent, which allowed the data be secure in the university environment,
synchronous and connected with all machines, while also being reliable server.

3.3.9 React

PolliVidis uses the open source Javascript library React for the front-end part.React is
known as the most popular web framework due to its highly flexible structure, and has a
wide range of documentation and sources for developers to use.With the help of React
and some of its packages, all of the components that require user interactions are
developed.

3.3.10 Google Maps API

One of the core functionalities of PolliVidis is to show pollen sample upload locations.
This requires great precision on the location, ease of use and familiarity for the users, and
automatic local mapping. One of the prominent API’s for this task is Google Maps API,
which is familiar with most of the users while being easy to use for them. In the
implementation and development stage, Google Maps API was also simple to integrate
with the overall project. Hence, it was chosen and utilized strongly.

 49

4. Development and Implementation Details

4.1 Image Processing Implementation

PolliVidis requires some procedure of image processing in two different but closely related
areas; raw dataset has to be processed to obtain single pollen images can be fed into ML
model, and user supplied image to be analyzed has to be processed before forwarding
into ML model. The main necessity of this image processing procedure comes from the
fact that neither the raw dataset images nor the user supplied images consist of single
pollen images. However, ML model can only process single pollen images to train itself
or classify the given image. To supply ML model with single pollen images, some image
processing procedure has to be applied on these raw dataset images and user supplied
images.

This procedure will detect and extract pollen images from the supplied image. For
example; when the user supplies PolliVidis a pollen image including 3 Betula pollens, this
procedure will detect that there are three pollens in this image and extract each pollen
creating its own image. Then, the procedure will forward each extracted image to the ML
model to learn its type (classification). ML model will tell that the supplied images are all
Betula. Finally, this procedure will label each pollen in the original supplied image with its
classification.

Figure 5: Image Extraction Procedure

 50

Implementation of such procedure came out to be much harder than we initially
participated in. Its implementation took as long as the entire ML model implementation.
General procedure can be divided into subroutines as follows;

1. Folder Iteration Procedure
2. Load Image
3. Transform into GrayScale
4. Obtain Otsu Threshold
5. Morphology Sequence
6. Label Image according to Otsu Threshold to obtain Regions
7. Extract Single Pollens from the Original Image using Label Coordinates
8. Forward to the Model (details in ML Implementation Section)
9. Label Original Image with Classification Information

In the first step, we have implemented a folder iteration algorithm that directs each image
of each species in the dataset to the image processing procedure. This step directs a
single image in the case of a user supplied image. Its implementation was pretty
straightforward.

In the second step, the given image is loaded to the memory as a Python array (NumPy
array) to ease the morphology sequence procedure.

In the third step, the loaded image is transformed into a GrayScale image for Otsu
Thresholding.

Figure 6: Classification Outcome

 51

In the fourth step, Otsu Threshold of the gray scaled image is obtained (Python skimage
library Otsu Function).

In the fifth step, a series of Morphology Sequences are applied to the thresholded image
to finetune the labeled areas. This step is the main functionality of Image Processing
Procedure and the hardest step to implement. We have implemented two different but
mostly equivalent Morphology Sequences Procedures, one for automatic procedure for
general users, and one for manual morphology procedure for more sophisticated users.
The alternative morphology procedures are opening, closing, erosion, dilation, area
opening, and are closing. We have realized that multi erosion followed by molti dilation
and finally area closing is well-suited for most pollen images. Thus, we have automated
this procedure and expect users to supply only one parameter, number of multi erosion
and dilations to apply. Users can find the correct parameter of his/her pollen image with
trial and error since the range is pretty small going 0 to 40 by 5. In the manual mode,
users can apply all morphology procedures in diseried order by specifying the whole
sequence. For example, ‘E10-D10-AC100000’ means 10 erosion followed by 10 dilation
and followed by 100000 area closing.

In the sixth step, we label the regions of the thresholded image with skimage library. It
shows distinct regions in the image.

In the seventh step, each single pollen image is extracted from the original image
according to the coordinates of labeling in the previous step. Thus, we obtain the single
pollen images of the original image.

In the eighth step, we forward each pollen image to the ML model to classify it. Details of
the ML model will be supplied in the next section.

In the ninth and the last step, procedure labels the original image with the classification
information supplied by the ML model.

 52

4.2 Machine Learning Implementation

After the preparation of the dataset, we created from scratch and the Image Processing
Procedure implementation; we have implemented the core functionality of PolliVidis,
machine learning; more specifically Convolutional Neural Network for multiclass image
classification.

In the first step, we have implemented different CNN architectures with pretrained
parameters to make use of transfer learning. We have implemented AlexNet, ResNet50,
VGG16, and VGG19 architecture. Moreover, we have freezed the models half way
through and changed their final layer to match it with our number of classes which is 23
currently. It should be noted that we are starting to write an article on the machine learning
part of this project which will use different and fine-tuned architectures.

After loading the model, we have implemented the transformations we will apply to the
training and validation datasets to make use of Data Augmentation. We have decided
which data augmentation techniques we will use.

Figure 7: Image Processing Procedure Detailed

 53

After that, we have implemented the dataset loading and partition procedures which loads
the dataset into memory and partition it into training, validation, and test datasets.

Then, we have decided and implemented the loss function (Cross Entropy Loss),
optimizer (Adam Optimizer), and Learning Rate Scheduler. We have passed these to the
training function.

Before implementing the training function, we have implemented the load and save
models and checkpoints. Checkpoints allow us to put literal checkpoints into the training
procedure and continue it within different runs. It helps a lot since Google Colab
disconnects us after 2 hours of idleness.

Then, we have implemented the training procedure which is the barebone of the entire
machine learning implementation. We have used Batch Gradient Descent with Adam
Optimizer and Cross Entropy Loss. It means that at each epoch, the procedure divides
the training dataset into batches and evaluates the model at the end of each batch. After
each batch, the loss function is recalculated and passed to the optimizer which will
minimize it. Then, Adam optimizer recalculates the unfreezed weights of the model.
Finally, the learning rate scheduler takes a step and recalculates the current learning rate
Adam optimizer should use. Algorithm calculates the loss and accuracy at the end of each
batch and shows it. After that, the validation process takes over. Validation loss and
accuracy is calculated in here for us to decide on the hyperparameters of the model which
can be listed as follows:

1. Learning Rate
2. Epoch
3. Batch Size
4. Step Size of Learning Rate Scheduler
5. Gamma Value of Learning Rate Scheduler
6. Training-Validation Split Ratio

After the training procedure, the model gets into the testing procedure which will decide
the accuracy, F1, precision, and recall scores of the trained and fine-tuned model.

After the testing, several plots are calculated and shown such as; loss, accuracy,
confusion matrix, and 20 pollen images tested.

 54

Figure 10: CNN Loss Graph Figure 9: CNN Accuracy graph

Figure 8: CNN Confusion Matrix

 55

Figure 12: CNN Performance Metrics

Figure 11: CNN Test Examples (red ones are wrongly predicted)

 56

4.3 Backend and Database Implementation

The backend portion of PolliVidis can be divided into 2 parts: the request handler and the
database. PolliVidis utilizes Django REST API Framework in its backend and MySQL as
its database implementation.

Firstly, in order to create the request handler, the required requests are discussed,
planned and defined. In these discussions, content, purpose and the utilization of these
requests are established. Afterwards, all these requests are divided into two as admin
calls or API calls. The API calls were established as the requests that would be used in
the end product by the user meanwhile the admin calls were created for testing,
debugging, verification, and management purposes.

Furthermore, Django model classes were created which all corresponded to a table in the
database in order to properly acquire the results from the calls that would be made to
database. Additionally, the serializers of each model is implemented. These serializers
allowed the managed, created or acquired objects to be sent as a JSON type data as a
HTTP response to frontend. Hence, especially in get requests, the backend could provide
an HTTP response containing complex objects rather than data of primitive type to
frontend.

Simultaneously, the SQL statements for the database are created. These sql statements
are implemented as callable functions of the DatabaseManager. Additionally, these
functions are created as general and context free as possible. In other words, they are
created as general get, update, delete and insert methods for particular tables. Therefore,
this allowed these functions to be reusable and callable by different requests and
requirements of the frontend as well as the backend.

After the functions that execute the SQL statements for tables are finished, and along
with the progress of the frontend, logical request handling functions for the planned
request were started to be implemented. These functions would correspond to a request
from the frontend, and then would execute a function from DatabaseManager.
Furthermore, it would return a proper HTTP response for the frontend such as an error
response if there is a bad request, the request data is unsuitable, or a problem occurred
in the database. Conversely, especially if the request was a get request, the response
data would be prepared in the form of Django models and serializers if the request is
handled successfully. Additional operations could be done for the data such as filtering
uploaded samples for the pollen map with properly given specifications.

 57

For the most part, the backend implementation was run along with the progress of the
frontend. This was caused by the fact that a backend function was useless without a
proper frontend counterpart and furthermore, content, details and requirements of the
requests could change during the development and implementation stage, and backend
would need to react as well as adapt to the changes by aligning its progress with the
frontend. This also allowed the connection testing and request handling verification to be
complete simultaneously.

A major issue of the Django was the problem of sending an image from backend to
frontend. Although process of storing the image in the MySQL database was successful,
by storing it as binary data, and the process of retrieving the said image from database
to the request handler, the image could not be returned as an HTTP response since it is
converted to a JSON data, which could not store an image or its binary data.

After further investigation and research, this image issue was found to be a common
problem in Django projects. Nevertheless, the transfer of image from frontend to backend
was necessary in PolliVidis in order to direct the pollen image to the machine learning
model, which itself would identify pollens and recognize them. During this process, a
processed image would be created which needed to be transferred from backend and
frontend; this part of the process was not achievable by Django alone.

Hence, it was decided to use Google Firebase systems file management service. Instead
of transferring the image from frontend to backend and vice versa, the image would be
uploaded to the Firebase file storage space. Next, the backend would use this download
this image and use it in its process and afterwards, the newly generated image would be
uploaded to the same storage space which then could be accessed by the frontend. Since
each analysis could be identified by a sample id, the images could be uploaded and
accessed by the same sample id automatically. Although this meant that the image would
be take a longer route between frontend and backend, that consequently increase the
analysis time of the whole system, using Firebase solved the major problem of image
transfer.

Finally, the model created in the machine learning implementation would be connected
to the backend via the MLManager class, the backend was able to handle each frontend
request including taking an image, passing it to the machine learning model, and then
returning the result of the identification process; or simply, allowed the analysis of the
pollen images.

In the end, several bug fixes and performance improvements were applied and the
backend implementation was successfully completed.

 58

4.4 UI Implementation

PolliVidis is a web application and it is created using React.js as the main framework.
First the design drafts of the pages are prepared. After the first designs, the pages are
implemented one by one. At the beginning of the project, we created a priority list for the
web application functionalities and the pages are implemented regarding that order. The
list can be seen below:

Priority List

1) Analyze Sample
2) Analysis Report
3) Pollen Map
4) Previous Analyses
5) Sign Up, Login, Logout
6) Profile
7) Feedback
8) About Us, User Manual

The main user scenario of PolliVidis is as follows. A user opens the web application and
goes into the Analyze Sample page to upload an image. Image is sent to the backend
and also stored in Firebase. The machine learning analysis is done in the backend and
the Analysis Report page displays the response. In addition, a user can view pollen
analyses done by Academic users in the Pollen Map page. Furthermore, if an Academic
login is done, the user’s analyses are added to the Pollen Map. Also, Academic users
have profile pages and can see their previous analyses. Moreover, every user can view
the About Us page and User Manual, also can send feedback.

In order to send and get information to and from backend Axios is used. “Axios, which is
a popular library, is mainly used to send asynchronous HTTP requests to REST
endpoints” [15].

In addition, every page is a React function component and is composed of other smaller
components as we followed a bottom-up approach. Thanks to this approach, we could
use the same components for different pages. We manage the communication between
parent and child components with React’s callback function. For the built in components
such as buttons we used Material UI, a famous React component library. Material UI
components have built in CSS but they can be customized and we customized them the
way they suit our purposes.

 59

Other than Material UI library, for the Map component, we used Google Maps API built
for JavaScript. Google Maps API lets users choose their location from the displayed map.
Furthermore, with the Geolocation API and “Get My Location” button we give users
freedom to choose their current location without marking their location from the map. For
filtering purposes, to filter the species of pollen that is going to be displayed, we decided
to use Material UI’s Switch component. With the npm library Date-Picker, we let users
decide the time interval of the pollen analyzes to be displayed on the map. For the
session-based user registration system, we used the sessionStorage functionality of
React to keep the user information stored from the moment the user is logged in until the
browser tab is closed. To manage the navigation between pages, we used React Router
DOM package. For external packages that described above, we used the npm packaging
system to import packages into our application.

 60

5. Testing Details

5.1 Testing of Image Processing Procedure

Testing of Image Processing Procedure is straightforward as the final product of the
procedure is available as soon as the code runs. Thus, testing of how well the Image
Processing Procedure performs on the dataset is visualized in the development process.
Image Processing Procedure is said to be well performed when it manages to extract
more than %95 of the entire raw dataset properly. Its performance on the user supplied
image relies on the morphology sequence user supplies.

5.2 Testing of Machine Learning Procedure

Testing of Machine Learning Procedure is maintained by log files. The procedure created
a plain text file on Google Drive as a log file at the beginning of its design. After that, the
procedure logged everything it did on the dataset and model with proper header including
all hyperparameters and the timestamp.

Hyperparameter testing of the machine learning model is maintained by the log files as
well as the output graphs of the procedure such as loss, accuracy, confusion matrix, and
last but not least, validation set.

After the testing of the final ML model, we obtain more than %98 accuracy. Moreover, all
other scores such as F1 are higher than %98.

5.3 Testing of Backend and Frontend

Testing of the website is mainly manual. Expected behaviors of database, user interface
and api calls were mostly checked by using frontend screen and console and also Django
terminal.

 61

6. Maintenance Plan and Details

Image Processing and Machine Learning Procedures are backboxes that do not require
maintenance in time except the library versions these procedures use. However, they are
highly open to improvements since the success rate of the Image Processing Procedure
can always be improved as well as the accuracy and the number of the pollen types in
Machine Learning Procedure. Such improvements will be considered when we write the
article of this project.

Web application maintenance includes database maintenance, frontend framework
library’s version updates, Google Maps Api and Google Firebase account and storage
checks, browser compatibility checks.

7. Other Project Elements

7.1 Consideration of Various Factors in Engineering Design

● Public Health

 PolliVidis aims to increase the life quality of people that have pollen allergies by
showing the allergenic pollen information at his/her area so that users can take
precautions. Since it is directly related to public health, we have to have some standards
which ensures to protect public health, at least not put it in danger. That is the main reason
PolliVidis allows only academics to upload their analyses to its database and uses these
analyses to give predictions. The system ensures the reliability of each academic. In any
case, the predictions of PolliVidis should be taken as advice.

● Public Safety

Only concern with public safety can be the privacy of academics since PolliVidis stores
the communication information of each academic. The system gives privacy options to
the academic about who can view their information. If an academic wants to keep his/her
communication information private, s/he can do so.

● Public Welfare

 62

PolliVidis wants to increase the user's quality of life by showing the allergenic pollen
information at his/her area so that the user can learn the pollen levels and take
precautions. Moreover, academics can share sample analyses quickly which may
increase collaboration in academic research.

● Global Factors

PolliVidis will be designed in a way that it can be opened to the world easily with some
adaptations and regulations since different countries have different allergenic pollen types
and a single model cannot be trained to classify all of them. Moreover, analysis sharing
between academics would help any academic worldwide.

● Cultural Factors

Since PolliVidis is related mostly to academic research and scientific information sharing,
effects of cultural factors are minimal.

● Social Factors

Sample and analysis upload to the pollen map will be allowed for academic staff only.
Thus, uploading random images to the map will not be possible to prevent potential
abuse. The feedback page allows users to send feedback about system problems or
specific samples. Finally, PolliVidis does not support direct messaging which reduces the
concerns about online abuse.

● Environmental Factors

It is not expected that the usage of PolliVidis website will cause any environmental
problems apart from the energy the servers and database will use and this can be seen
as the bare minimum damage. Any type of printed or physical material will not be needed.
Moreover, the generated dataset will be published and eliminate the need of collecting
the same samples again and again for future research, which saves human and electrical
energy.

 63

● Economic Factors

All the services PolliVidis uses are free and PolliVidis does not charge its users for the
map usage or sample analysis.

 Effect Level (out of 10) Effect

Public Health 8 Showing allergenic pollen
density on a map so that
people can take
precautions is one of the
main goals of the system

Public Safety 3 System will have privacy
options so academics can
keep their information
private if they would like to.

Public Welfare 8 System aims to raise the
public welfare with the
Pollen Map feature so that
users can take precautions
but also as letting people
share their pollen samples
quickly in order to increase
collaboration in academic
research.

Global Factors 3 PolliVidis will be designed
in such a way that it can be
a world-wide application
easily, also sharing
analyses with the world
would help any academics
worldwide.

Cultural Factors 2 The effect of cultural factors
are negligibly low.

Social Factors 4 PolliVidis does not have a
direct messaging service
and the system will not
allow people to upload
random images so that
online abuse will be
prevented.

 64

Environmental Factors 3 Publishing the dataset will
eliminate the need of
collecting the same
samples, hence
consumption of electric
energy will be minimized.

Economic Factors 2 The effect of economic
factors is negligibly low.

7.2 Ethics and Professional Responsibilities

PolliVidis aims to provide allergenic pollen classification with the best accuracy.
Furthermore, it aims to provide information about the allergenic pollen density to its users
therefore the data it provides to its users should not be biased. For registered users, it
should ensure the privacy of their personal information and fit the KVKK in Turkey. It
should not share or process any personal data without the user's consent [16].For further
versions, privacy policies might be extended to fit into global regulations. For unregistered
users, it should not save or require any usage of personal information.

7.3 Judgements and Impacts to Various Contexts

● Developing PolliVidis as a website:

As developers, we decided to produce PolliVidis as a website; we could also choose a
mobile application or desktop application. However, our goal is to help not only the
palynologists in Ankara University but to help others in different parts of the world in future
improvements, therefore; we decided that a website would fit the best. Furthermore,
mobile applications would not be useful because microscopes are usually connected with
computers and it is easier for scientists to upload samples from computers.

 65

Judgment Level of Impact Description

Global Context 9 Publishing it as a website
enables scientists from
other parts of the world to
use PolliVids.

Economic Context 4 PolliVidis is a free website
and does not require any
installation fee.

Environmental Context 6 Pollen map becomes
available for everyone in
Turkey.

Social Context 8 PolliVidis website enables
scientists to see analyses
made by others.

● Choosing the English as the language of the website:
PolliVidis is an English website since nearly every university in Turkey requires a level of
English and it is the most commonly used language in the world.

Judgment Level of Impact Description

Global Context 9 English is the most
commonly used language.

Economic Context 4 Making it English might
increase the number of
users.

Environmental Context 0 None

Social Context 0 Making it English might
increase the number of
users.

 66

● Disabling non-academic users to upload analyses on pollen map:
Information published in pollen map is naive information about pollen densities and any
misinformation might be dangerous for allergic people. Therefore; in order to upload an
analysis in pollen map, users should be registered academics.

Judgment Level of Impact Description

Global Context 4 It is important for public
health.

Economic Context 0 None

Environmental Context 0 None

Social Context 8 It is important for public
health.

● Publishing a Pollen Map that includes only Turkey:
For the first version, PolliVidis only has a pollen map that includes Turkey. However,
pollen map is crucial for the allergenic people and making it global in the first version
might bring safety issues on correctness of analyses.

Judgment Level of Impact Description

Global Context 0 None.

Economic Context 0 None.

Environmental Context 6 Pollen map becomes
available for everyone in
Turkey.

Social Context 3 People cannot see pollen
analyses in different parts
of the world.

 67

7.4 Teamwork Details

7.4.1 Ömer Ünlüsoy

- Helped creating the dataset in Ankara University (photographed >2000 pollens).
- Designed and implemented the Image Processing Procedure for the dataset and

user supplied images.
- Designed and implemented the Machine Learning Procedure.

7.4.2 Gamze Güliter
- Helped creating the dataset in Ankara University (photographed >2000 pollens).
- Helped Ömer on ML implementation

7.4.3 İrem Tekin

- Found the project topic and provided connections with Ankara University and
Zonguldak Bülent Ecevit University Palynology departments.

- Helped creating the dataset in Ankara University (photographed >2000 pollens).
- Designed and implemented UI of the web application using React.
- Helped with backend-frontend communication implementation.
- Helped to solve some backend problems.

7.4.4 Ece Ünal
- Helped creating the dataset in Ankara University (photographed >2000 pollens).
- Worked with İrem on the UI implementation
- Worked with Ada and İrem to manage the communication between backend and

the frontend

7.4.5 Umut Ada Yürüten
- Planned and implemented the backend
- Worked on backend - frontend communication
- Worked on backend - database communication
- Connected backend with the machine learning model
- Improved the database and contributed by creating SQL statements
- Helped solving several UI problems
- Suggested and implemented Firebase for image transfer

 68

7.5 New Knowledge Acquired and Applied

In order to understand the nature of the pollen classification problem, we needed to learn
its motivation. Therefore, we read a lot of academic papers about pollen and pollen
classification applications.

There is only one member in our team who is experienced with Deep Learning, who is
Ömer. Therefore, he leads us in the learning process. We watched YouTube tutorials and
Udemy Courses on Convolutional Neural Networks. For building the website, we used
YouTube tutorials and hands-on experience. For backend and database application, we
again, combined our previous knowledge and followed tutorials.

8.Conclusion and Future Work

In conclusion, as the PolliVidis team, we managed to implement a machine learning
model with more than %98 accuracy which is higher than previously published pollen
classification papers. Therefore, we plan to publish an article about the computer vision
aspect of our project. Our goal is to write our paper in the summer and send it to the
journals as soon as possible.

We also spent a lot of time collecting our own data. Furthermore, we took more than
5000+ pollen pictures using a microscope, each of them containing multiple pollen
samples. Using our image processing algorithm, our data size increases up to 6000
samples. Currently, there are pollen datasets such as PalDat, however, the size of these
datasets are either small or they do not contain samples with the same format (taken with
different microscopes, in different labs). Therefore, we plan to publish our data set both
in GitHub and as a paper if possible. Our data is collected by using clean samples, and
the same format. We believe that it would be really useful for the future biological and
palynological research.

We also created a pollen map on our website which shows the pollen densities in Turkey
and believe that it will be really useful for the people with seasonal pollen allergies.
There are some companies such as Arçelik, who currently work on pollen classification
applications on their air-cleaning products. One of our future goals is to collaborate with
one of these companies on their future pollen classification applications.

 69

9. User Manual and Installation

9.1 About Installation
PolliVidis does not require any installation since it is a web application. Anyone with an
internet connection and website address can use PolliVidis.

9.2 Pollen Map
This is the page when users enter the PolliVidis webpage. It shows the pollen map which
contains pollen analysis of specific locations. There are mini red microscope icons on the
pollen map. These icons work as a button and if the user pushes one of them, he/she can
see the pollen analysis made by academics on that location.

There is a red button “Filter” on the left side of the main page, by using this button, any
user can see the location of a special pollen. For example, if they filter the name “Populus
nigra”, they will only see the locations of Populus nigra pollens in the map.

Figure 13: Pollen Map

 70

9.3 Registration (Sign Up)
If a user presses the academic login button in the navigation menu, the login page will be
open. There is a “Sign Up” button in that page which will direct the unregistered user to
the Registration Page. In the Registration Page, academic users will be signed up to the
PolliVidis by their name, appellation, institution, email and a safe password.

Users need to register by using a unique email address, previously used email addresses
are not allowed. For the safety issues, all registered users need to be academics,
therefore, academicians have to give the name of the institution that they work in order to
validate their registration request.

Figure 14: Menu Bar

Figure 15: Login

 71

Figure 16: Academic Sign Up

9.4 Academic Login

In order to add analysis to the pollen map, or look back to their previous analysis,
academics have to login from the academic login page. Below is the academic login page
where they can login by their academic email and password.

Figure 17: Academic Login

 72

9.5 Navigation Menu without Academic Login

Actions of a non-academic user is limited in PolliVidis. The user can analyze a pollen
sample, look at the pollen map but cannot add anything to the pollen map. Below is the
left navigation menu in PolliVidis without any login.

Users without an academic login can also send feedback to developers, see informative
pages such as “How PolliVidis Works” and “About Us”.

Figure 18: Navigation Menu Bar without Login

9.6 Navigation Menu with Academic Login

Below is the navigation menu after academic login. In that menu, academic users can
see their profile from the “Profile” button, see their previous analyses by the “Previous
Analyses” button and log out by the “Logout” button.

 73

Figure 19: Navigation Menu Bar with Login

9.7 Analyze Sample Page

In order to analyze a sample, users should press the “Analyze Sample” button in the
navigation menu. After pressing the button, the Analyze Sample page will be open. In that
page, there are option buttons in the upper left corner. By using the “Upload Sample
Image” button, users can upload any pollen image from their local device.

There is a Morphology Sequence box with the default value 10. This input is for erosion
and dilation settings in pollen image processing, on average using the value ten gives
good results, however; users can change it.

There is a “Get My Location” button next to the Morphology Sequence box. This button
is used to get the user's location automatically in order to save the analysis in a pollen
map. However, users can also give any location by pressing on that location in the pollen
map.

After all the required inputs are given, the user needs to press “Analyze” button and wait
for machine learning algorithm to analyze the sample.

 74

Figure 20: Analyze Sample

Figure 21: Analyze Sample Location

 75

9.7.1 Upload Image Page

When users press the “Upload Sample Image” button in the Analyze Sample page, the
Upload Image Page opens. From this page, users can browse through their local device
and upload a pollen image from there in order to analyze it.

Figure 22: Analyze Sample Upload Image

9.7.2 Analysis Report Page

After the user gives the required information and presses the “Analyze” button, the related
Analysis Report page opens. From this page, users can see the classified pollen that the
sample contains and the other details such as date and location of analysis.

In the example below, the algorithm classified the pollen samples as juniperus_communis
pollens, date is May 2 2022, Monday.

 76

Figure 23: Analysis Report

9.8 Previous Analyses Page

Academic users can also see their previous analyses from the “Previous Analyses” button
in the navigation menu. After pressing the button, the Previous Analyses page opens. In
this page all the analyses made by the user are listed by their date and location. Users
can see the details of them by pressing the “View” buttons on the right side of each
analysis. After pressing these buttons small windows which contain information of that
analysis will be open.

Figure 24: Navigation Menu Bar

 77

Figure 25: Previous Analysis Table

9.9 Profile Page
Academic users can see and edit their profile information from the Profile button in the
navigation menu. After pressing the button, the profile page of the user will be open. From
the profile page, users can edit their personal information and change their profile picture.
In order to upload a new profile picture, users need to press the “Change Profile Picture”
button and choose a picture from their local device. In order to edit their personal
information, users need to click the edit button on the left side.

Figure 26: Navigation Menu Bar

 78

Figure 27: Profile

9.10 About Us Page

In order to see credentials of developers, users need to click on the “About Us” button in
the navigation menu.

Figure 28: About Us

 79

9.11 Download Dataset Page

In order to download the dataset collected by us, users can press the Download Dataset
button in the navigation menu. In that page, there is a link for users to press in order to
download the dataset.

Note for the users: Currently, dataset is not available as PolliVidis team plans to write
the article of this project and the dataset will be published afterwards. For more
information, contact any team member.

Figure 29: Download Dataset

9.12 Feedback Page
Users can give feedback to developers from the Send Feedback button in the
navigation menu. In that page, they can share their opinions about PolliVidis with their
names and email addresses.

 80

Figure 30: Feedback

9.13 How PolliVidis Works Page
In order to see how PolliVidis works, users can press the How PolliVidis Works button in
the navigation menu.

Figure 31: How PolliVidis Works?

 81

10.References

[1] K. Fakhroutdinov, “The Unified Modeling Language,” UML Diagrams - overview, reference,
and examples. [Online]. Available: https://www.uml-diagrams.org/. [Accessed: 26-Feb-2022].

[2] “Use case diagram,” Wikipedia, 30-Oct-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Use_case_diagram. [Accessed: 26-Feb-2022].

[3] “UML sequence diagram tutorial,” Lucidchart. [Online]. Available:
https://www.lucidchart.com/pages/uml-sequence-diagram. [Accessed: 26-Feb-2022].

[4] “Unified modeling language (UML): Activity Diagrams,” GeeksforGeeks, 13-Feb-2018.
[Online]. Available: https://www.geeksforgeeks.org/unified-modeling-language-uml-activity-
diagrams/. [Accessed: 26-Feb-2022].

[5] A. Athuraliya,“What is a deployment diagram: Deployment diagram tutorial,” Creately Blog,
27-Sep-2021. [Online]. Available: https://creately.com/blog/diagrams/deployment-diagram-
tutorial/. [Accessed: 26-Feb-2022].

[6] “Class diagram,” Wikipedia, 08-Dec-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Class_diagram. [Accessed: 26-Feb-2022].

[7]“IEEE Reference Guide.” IEEE Periodicals, New Jersey, 12-Nov-2018.

[8] “About the customer matching process,” Google Ads Help. [Online]. Available:
https://support.google.com/google-ads/answer/7474263?hl=en. [Accessed: 08-Nov-2021].

[9] “How fast should my website load?,” Blue Corona, 20-Aug-2021. [Online]. Available:
https://www.bluecorona.com/blog/how-fast-should-website-be/. [Accessed: 08-Oct-2021

[10] “Pytorch,” PyTorch. [Online]. Available: https://pytorch.org/. [Accessed: 26-Feb-2022].

[11] “scikit-image,” scikit. [Online]. Available: https://scikit-image.org/. [Accessed: 26-Feb-2022].

[12] “React – a JavaScript library for building user interfaces,” – A JavaScript library for building

user interfaces. [Online]. Available: https://reactjs.org/. [Accessed: 26-Feb-2022].

[13] Django. [Online]. Available: https://www.djangoproject.com/. [Accessed: 26-Feb-2022].

[14] Google maps platform. [Online]. Available: https://developers.google.com/maps. [Accessed:

26-Feb-2022].

 82

[15] “Axios in react: A guide for beginners,” GeeksforGeeks, 29-Apr-2022. [Online].
Available:https://www.geeksforgeeks.org/axios-in-react-a-guide-for-beginners/. [Accessed: 02-
May-2022].

[16] Kı̇şı̇sel Verı̇lerı̇ Koruma Kurumu: KVKK: Kişisel Verileri Koruma Kurumu Başkanlığı,”
Kvkk. [Online]. Available: https://www.kvkk.gov.tr/. [Accessed: 10-Nov-2021].

